829a282c-b049-4019-bd38-5ace8d8a6417.json 92 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939
  1. {
  2. "__type__": "cc.EffectAsset",
  3. "_name": "builtin-3d-particle",
  4. "_objFlags": 0,
  5. "_native": "",
  6. "properties": null,
  7. "techniques": [
  8. {
  9. "name": "opaque-add",
  10. "passes": [
  11. {
  12. "stage": "opaque",
  13. "rasterizerState": {
  14. "cullMode": 0
  15. },
  16. "blendState": {
  17. "targets": [
  18. {
  19. "blend": true,
  20. "blendSrc": 770,
  21. "blendDst": 1,
  22. "blendSrcAlpha": 770,
  23. "blendDstAlpha": 1
  24. }
  25. ]
  26. },
  27. "depthStencilState": {
  28. "depthTest": true,
  29. "depthWrite": false
  30. },
  31. "properties": {
  32. "mainTexture": {
  33. "value": "grey",
  34. "type": 29
  35. },
  36. "mainTiling_Offset": {
  37. "value": [
  38. 1,
  39. 1,
  40. 0,
  41. 0
  42. ],
  43. "type": 16
  44. },
  45. "tintColor": {
  46. "value": [
  47. 0.5,
  48. 0.5,
  49. 0.5,
  50. 0.5
  51. ],
  52. "inspector": {
  53. "type": "color"
  54. },
  55. "type": 16
  56. }
  57. },
  58. "program": "builtin-3d-particle|particle-vs-legacy:lpvs_main|tinted-fs:add"
  59. }
  60. ]
  61. },
  62. {
  63. "name": "opaque-alpha-blend",
  64. "passes": [
  65. {
  66. "stage": "opaque",
  67. "rasterizerState": {
  68. "cullMode": 0
  69. },
  70. "blendState": {
  71. "targets": [
  72. {
  73. "blend": true,
  74. "blendSrc": 770,
  75. "blendDst": 771,
  76. "blendSrcAlpha": 770,
  77. "blendDstAlpha": 771
  78. }
  79. ]
  80. },
  81. "depthStencilState": {
  82. "depthTest": true,
  83. "depthWrite": false
  84. },
  85. "properties": {
  86. "mainTexture": {
  87. "value": "grey",
  88. "type": 29
  89. },
  90. "mainTiling_Offset": {
  91. "value": [
  92. 1,
  93. 1,
  94. 0,
  95. 0
  96. ],
  97. "type": 16
  98. },
  99. "tintColor": {
  100. "value": [
  101. 0.5,
  102. 0.5,
  103. 0.5,
  104. 0.5
  105. ],
  106. "inspector": {
  107. "type": "color"
  108. },
  109. "type": 16
  110. }
  111. },
  112. "program": "builtin-3d-particle|particle-vs-legacy:lpvs_main|tinted-fs:add"
  113. }
  114. ]
  115. },
  116. {
  117. "name": "opaque-add-multiply",
  118. "passes": [
  119. {
  120. "stage": "opaque",
  121. "rasterizerState": {
  122. "cullMode": 0
  123. },
  124. "blendState": {
  125. "targets": [
  126. {
  127. "blend": true,
  128. "blendSrc": 770,
  129. "blendDst": 771,
  130. "blendSrcAlpha": 770,
  131. "blendDstAlpha": 771
  132. }
  133. ]
  134. },
  135. "depthStencilState": {
  136. "depthTest": true,
  137. "depthWrite": false
  138. },
  139. "properties": {
  140. "mainTexture": {
  141. "value": "grey",
  142. "type": 29
  143. },
  144. "mainTiling_Offset": {
  145. "value": [
  146. 1,
  147. 1,
  148. 0,
  149. 0
  150. ],
  151. "type": 16
  152. },
  153. "tintColor": {
  154. "value": [
  155. 0.5,
  156. 0.5,
  157. 0.5,
  158. 0.5
  159. ],
  160. "inspector": {
  161. "type": "color"
  162. },
  163. "type": 16
  164. }
  165. },
  166. "program": "builtin-3d-particle|particle-vs-legacy:lpvs_main|tinted-fs:multiply"
  167. }
  168. ]
  169. },
  170. {
  171. "name": "opaque-add-smooth",
  172. "passes": [
  173. {
  174. "stage": "opaque",
  175. "rasterizerState": {
  176. "cullMode": 0
  177. },
  178. "blendState": {
  179. "targets": [
  180. {
  181. "blend": true,
  182. "blendSrc": 770,
  183. "blendDst": 771,
  184. "blendSrcAlpha": 770,
  185. "blendDstAlpha": 771
  186. }
  187. ]
  188. },
  189. "depthStencilState": {
  190. "depthTest": true,
  191. "depthWrite": false
  192. },
  193. "properties": {
  194. "mainTexture": {
  195. "value": "grey",
  196. "type": 29
  197. },
  198. "mainTiling_Offset": {
  199. "value": [
  200. 1,
  201. 1,
  202. 0,
  203. 0
  204. ],
  205. "type": 16
  206. }
  207. },
  208. "program": "builtin-3d-particle|particle-vs-legacy:lpvs_main|no-tint-fs:addSmooth"
  209. }
  210. ]
  211. },
  212. {
  213. "name": "opaque-premultiply-blend",
  214. "passes": [
  215. {
  216. "stage": "opaque",
  217. "rasterizerState": {
  218. "cullMode": 0
  219. },
  220. "blendState": {
  221. "targets": [
  222. {
  223. "blend": true,
  224. "blendSrc": 770,
  225. "blendDst": 771,
  226. "blendSrcAlpha": 770,
  227. "blendDstAlpha": 771
  228. }
  229. ]
  230. },
  231. "depthStencilState": {
  232. "depthTest": true,
  233. "depthWrite": false
  234. },
  235. "properties": {
  236. "mainTexture": {
  237. "value": "grey",
  238. "type": 29
  239. },
  240. "mainTiling_Offset": {
  241. "value": [
  242. 1,
  243. 1,
  244. 0,
  245. 0
  246. ],
  247. "type": 16
  248. }
  249. },
  250. "program": "builtin-3d-particle|particle-vs-legacy:lpvs_main|no-tint-fs:premultiplied"
  251. }
  252. ]
  253. },
  254. {
  255. "name": "transparent-add",
  256. "passes": [
  257. {
  258. "stage": "transparent",
  259. "rasterizerState": {
  260. "cullMode": 0
  261. },
  262. "blendState": {
  263. "targets": [
  264. {
  265. "blend": true,
  266. "blendSrc": 770,
  267. "blendDst": 1,
  268. "blendSrcAlpha": 770,
  269. "blendDstAlpha": 1
  270. }
  271. ]
  272. },
  273. "depthStencilState": {
  274. "depthTest": true,
  275. "depthWrite": false
  276. },
  277. "properties": {
  278. "mainTexture": {
  279. "value": "grey",
  280. "type": 29
  281. },
  282. "mainTiling_Offset": {
  283. "value": [
  284. 1,
  285. 1,
  286. 0,
  287. 0
  288. ],
  289. "type": 16
  290. },
  291. "tintColor": {
  292. "value": [
  293. 0.5,
  294. 0.5,
  295. 0.5,
  296. 0.5
  297. ],
  298. "inspector": {
  299. "type": "color"
  300. },
  301. "type": 16
  302. }
  303. },
  304. "program": "builtin-3d-particle|particle-vs-legacy:lpvs_main|tinted-fs:add"
  305. }
  306. ]
  307. },
  308. {
  309. "name": "transparent-alpha-blend",
  310. "passes": [
  311. {
  312. "stage": "transparent",
  313. "rasterizerState": {
  314. "cullMode": 0
  315. },
  316. "blendState": {
  317. "targets": [
  318. {
  319. "blend": true,
  320. "blendSrc": 770,
  321. "blendDst": 771,
  322. "blendSrcAlpha": 770,
  323. "blendDstAlpha": 771
  324. }
  325. ]
  326. },
  327. "depthStencilState": {
  328. "depthTest": true,
  329. "depthWrite": false
  330. },
  331. "properties": {
  332. "mainTexture": {
  333. "value": "grey",
  334. "type": 29
  335. },
  336. "mainTiling_Offset": {
  337. "value": [
  338. 1,
  339. 1,
  340. 0,
  341. 0
  342. ],
  343. "type": 16
  344. },
  345. "tintColor": {
  346. "value": [
  347. 0.5,
  348. 0.5,
  349. 0.5,
  350. 0.5
  351. ],
  352. "inspector": {
  353. "type": "color"
  354. },
  355. "type": 16
  356. }
  357. },
  358. "program": "builtin-3d-particle|particle-vs-legacy:lpvs_main|tinted-fs:add"
  359. }
  360. ]
  361. },
  362. {
  363. "name": "transparent-add-multiply",
  364. "passes": [
  365. {
  366. "stage": "transparent",
  367. "rasterizerState": {
  368. "cullMode": 0
  369. },
  370. "blendState": {
  371. "targets": [
  372. {
  373. "blend": true,
  374. "blendSrc": 770,
  375. "blendDst": 771,
  376. "blendSrcAlpha": 770,
  377. "blendDstAlpha": 771
  378. }
  379. ]
  380. },
  381. "depthStencilState": {
  382. "depthTest": true,
  383. "depthWrite": false
  384. },
  385. "properties": {
  386. "mainTexture": {
  387. "value": "grey",
  388. "type": 29
  389. },
  390. "mainTiling_Offset": {
  391. "value": [
  392. 1,
  393. 1,
  394. 0,
  395. 0
  396. ],
  397. "type": 16
  398. },
  399. "tintColor": {
  400. "value": [
  401. 0.5,
  402. 0.5,
  403. 0.5,
  404. 0.5
  405. ],
  406. "inspector": {
  407. "type": "color"
  408. },
  409. "type": 16
  410. }
  411. },
  412. "program": "builtin-3d-particle|particle-vs-legacy:lpvs_main|tinted-fs:multiply"
  413. }
  414. ]
  415. },
  416. {
  417. "name": "transparent-add-smooth",
  418. "passes": [
  419. {
  420. "stage": "transparent",
  421. "rasterizerState": {
  422. "cullMode": 0
  423. },
  424. "blendState": {
  425. "targets": [
  426. {
  427. "blend": true,
  428. "blendSrc": 770,
  429. "blendDst": 771,
  430. "blendSrcAlpha": 770,
  431. "blendDstAlpha": 771
  432. }
  433. ]
  434. },
  435. "depthStencilState": {
  436. "depthTest": true,
  437. "depthWrite": false
  438. },
  439. "properties": {
  440. "mainTexture": {
  441. "value": "grey",
  442. "type": 29
  443. },
  444. "mainTiling_Offset": {
  445. "value": [
  446. 1,
  447. 1,
  448. 0,
  449. 0
  450. ],
  451. "type": 16
  452. }
  453. },
  454. "program": "builtin-3d-particle|particle-vs-legacy:lpvs_main|no-tint-fs:addSmooth"
  455. }
  456. ]
  457. },
  458. {
  459. "name": "transparent-premultiply-blend",
  460. "passes": [
  461. {
  462. "stage": "transparent",
  463. "rasterizerState": {
  464. "cullMode": 0
  465. },
  466. "blendState": {
  467. "targets": [
  468. {
  469. "blend": true,
  470. "blendSrc": 770,
  471. "blendDst": 771,
  472. "blendSrcAlpha": 770,
  473. "blendDstAlpha": 771
  474. }
  475. ]
  476. },
  477. "depthStencilState": {
  478. "depthTest": true,
  479. "depthWrite": false
  480. },
  481. "properties": {
  482. "mainTexture": {
  483. "value": "grey",
  484. "type": 29
  485. },
  486. "mainTiling_Offset": {
  487. "value": [
  488. 1,
  489. 1,
  490. 0,
  491. 0
  492. ],
  493. "type": 16
  494. }
  495. },
  496. "program": "builtin-3d-particle|particle-vs-legacy:lpvs_main|no-tint-fs:premultiplied"
  497. }
  498. ]
  499. }
  500. ],
  501. "shaders": [
  502. {
  503. "hash": 1682193167,
  504. "glsl3": {
  505. "vert": "\nprecision highp float;\nvec4 quaternionFromAxis(vec3 xAxis,vec3 yAxis,vec3 zAxis){\n mat3 m = mat3(xAxis,yAxis,zAxis);\n float trace = m[0][0] + m[1][1] + m[2][2];\n vec4 quat;\n if (trace > 0.) {\n float s = 0.5 / sqrt(trace + 1.0);\n quat.w = 0.25 / s;\n quat.x = (m[2][1] - m[1][2]) * s;\n quat.y = (m[0][2] - m[2][0]) * s;\n quat.z = (m[1][0] - m[0][1]) * s;\n } else if ((m[0][0] > m[1][1]) && (m[0][0] > m[2][2])) {\n float s = 2.0 * sqrt(1.0 + m[0][0] - m[1][1] - m[2][2]);\n quat.w = (m[2][1] - m[1][2]) / s;\n quat.x = 0.25 * s;\n quat.y = (m[0][1] + m[1][0]) / s;\n quat.z = (m[0][2] + m[2][0]) / s;\n } else if (m[1][1] > m[2][2]) {\n float s = 2.0 * sqrt(1.0 + m[1][1] - m[0][0] - m[2][2]);\n quat.w = (m[0][2] - m[2][0]) / s;\n quat.x = (m[0][1] + m[1][0]) / s;\n quat.y = 0.25 * s;\n quat.z = (m[1][2] + m[2][1]) / s;\n } else {\n float s = 2.0 * sqrt(1.0 + m[2][2] - m[0][0] - m[1][1]);\n quat.w = (m[1][0] - m[0][1]) / s;\n quat.x = (m[0][2] + m[2][0]) / s;\n quat.y = (m[1][2] + m[2][1]) / s;\n quat.z = 0.25 * s;\n }\n float len = quat.x * quat.x + quat.y * quat.y + quat.z * quat.z + quat.w * quat.w;\n if (len > 0.) {\n len = 1. / sqrt(len);\n quat.x = quat.x * len;\n quat.y = quat.y * len;\n quat.z = quat.z * len;\n quat.w = quat.w * len;\n }\n return quat;\n}\nvec4 quaternionFromEuler(vec3 angle){\n float x = angle.x / 2.;\n float y = angle.y / 2.;\n float z = angle.z / 2.;\n float sx = sin(x);\n float cx = cos(x);\n float sy = sin(y);\n float cy = cos(y);\n float sz = sin(z);\n float cz = cos(z);\n vec4 quat = vec4(0);\n quat.x = sx * cy * cz + cx * sy * sz;\n quat.y = cx * sy * cz + sx * cy * sz;\n quat.z = cx * cy * sz - sx * sy * cz;\n quat.w = cx * cy * cz - sx * sy * sz;\n return quat;\n}\nmat4 matrixFromRT(vec4 q, vec3 p){\n float x2 = q.x + q.x;\n float y2 = q.y + q.y;\n float z2 = q.z + q.z;\n float xx = q.x * x2;\n float xy = q.x * y2;\n float xz = q.x * z2;\n float yy = q.y * y2;\n float yz = q.y * z2;\n float zz = q.z * z2;\n float wx = q.w * x2;\n float wy = q.w * y2;\n float wz = q.w * z2;\n return mat4(\n 1. - (yy + zz), xy + wz, xz - wy, 0,\n xy - wz, 1. - (xx + zz), yz + wx, 0,\n xz + wy, yz - wx, 1. - (xx + yy), 0,\n p.x, p.y, p.z, 1\n );\n}\nmat4 matFromRTS(vec4 q, vec3 t, vec3 s){\n float x = q.x, y = q.y, z = q.z, w = q.w;\n float x2 = x + x;\n float y2 = y + y;\n float z2 = z + z;\n float xx = x * x2;\n float xy = x * y2;\n float xz = x * z2;\n float yy = y * y2;\n float yz = y * z2;\n float zz = z * z2;\n float wx = w * x2;\n float wy = w * y2;\n float wz = w * z2;\n float sx = s.x;\n float sy = s.y;\n float sz = s.z;\n return mat4((1. - (yy + zz)) * sx, (xy + wz) * sx, (xz - wy) * sx, 0,\n (xy - wz) * sy, (1. - (xx + zz)) * sy, (yz + wx) * sy, 0,\n (xz + wy) * sz, (yz - wx) * sz, (1. - (xx + yy)) * sz, 0,\n t.x, t.y, t.z, 1);\n}\nvec4 quatMultiply(vec4 a, vec4 b){\n vec4 quat;\n quat.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y;\n quat.y = a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z;\n quat.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x;\n quat.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;\n return quat;\n}\nvoid rotateVecFromQuat(inout vec3 v, vec4 q){\n float ix = q.w * v.x + q.y * v.z - q.z * v.y;\n float iy = q.w * v.y + q.z * v.x - q.x * v.z;\n float iz = q.w * v.z + q.x * v.y - q.y * v.x;\n float iw = -q.x * v.x - q.y * v.y - q.z * v.z;\n v.x = ix * q.w + iw * -q.x + iy * -q.z - iz * -q.y;\n v.y = iy * q.w + iw * -q.y + iz * -q.x - ix * -q.z;\n v.z = iz * q.w + iw * -q.z + ix * -q.y - iy * -q.x;\n}\nvec3 rotateInLocalSpace(vec3 pos, vec3 xAxis, vec3 yAxis, vec3 zAxis, vec4 q){\n float z = pos.z;\n float x = pos.x;\n float y = pos.y;\n vec4 viewQuat = quaternionFromAxis(xAxis, yAxis, zAxis);\n vec4 rotQuat = quatMultiply(viewQuat, q);\n rotateVecFromQuat(pos, rotQuat);\n return pos;\n}\nvoid rotateCorner(inout vec2 corner, float angle){\n float xOS = cos(angle) * corner.x - sin(angle) * corner.y;\n float yOS = sin(angle) * corner.x + cos(angle) * corner.y;\n corner.x = xOS;\n corner.y = yOS;\n}\nuniform Constants{\n vec4 mainTiling_Offset;\n vec4 frameTile_velLenScale;\n vec4 scale;\n};\nuniform CCGlobal {\n mat4 cc_matView;\n mat4 cc_matViewInv;\n mat4 cc_matProj;\n mat4 cc_matProjInv;\n mat4 cc_matViewProj;\n mat4 cc_matViewProjInv;\n vec4 cc_cameraPos;\n vec4 cc_time;\n mediump vec4 cc_screenSize;\n mediump vec4 cc_screenScale;\n};\nuniform CCLocal {\n mat4 cc_matWorld;\n mat4 cc_matWorldIT;\n};\nout vec2 uv;\nout vec4 color;\nvoid computeVertPos(inout vec4 pos, vec2 vertOffset, vec4 q, vec3 s\n#if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , mat4 viewInv\n#endif\n#if CC_USE_STRETCHED_BILLBOARD\n , vec3 eye\n , vec4 velocity\n , float velocityScale\n , float lengthScale\n , float xIndex\n#endif\n) {\n#if CC_USE_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = normalize(vec3(viewInv[0][0], viewInv[1][0], viewInv[2][0]));\n vec3 camY = normalize(vec3(viewInv[0][1], viewInv[1][1], viewInv[2][1]));\n vec3 camZ = normalize(vec3(viewInv[0][2], viewInv[1][2], viewInv[2][2]));\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, camZ, q);\n#elif CC_USE_STRETCHED_BILLBOARD\n vec3 camRight = normalize(cross(pos.xyz - eye, velocity.xyz)) * s.x;\n vec3 camUp = velocity.xyz * velocityScale + normalize(velocity.xyz) * lengthScale * s.y;\n pos.xyz += (camRight * abs(vertOffset.x) * sign(vertOffset.y)) - camUp * xIndex;\n#elif CC_USE_HORIZONTAL_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = vec3(1, 0, 0);\n vec3 camY = vec3(0, 0, -1);\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, cross(camX, camY), q);\n#elif CC_USE_VERTICAL_BILLBOARD\n vec2 viewSpaceVert = vec2(vertOffset.x * s.x, vertOffset.y * s.y);\n rotateCorner(viewSpaceVert, q.z);\n vec3 camX = normalize(vec3(cc_matView[0][0], cc_matView[1][0], cc_matView[2][0]));\n vec3 camY = vec3(0, 1, 0);\n vec3 offset = camX * viewSpaceVert.x + camY * viewSpaceVert.y;\n pos.xyz += offset;\n#else\n pos.x += vertOffset.x;\n pos.y += vertOffset.y;\n#endif\n}\nvec2 computeUV(float frameIndex, vec2 vertIndex, vec2 frameTile){\n vec2 aniUV = vec2(0, floor(frameIndex * frameTile.y));\n aniUV.x = floor(frameIndex * frameTile.x * frameTile.y - aniUV.y * frameTile.x);\n#if !CC_USE_MESH\n vertIndex.y = 1. - vertIndex.y;\n#endif\n return (aniUV.xy + vertIndex) / vec2(frameTile.x, frameTile.y);\n}\nin vec3 a_position;\nin vec3 a_texCoord;\nin vec3 a_texCoord1;\nin vec3 a_texCoord2;\nin vec4 a_color;\n#if CC_USE_STRETCHED_BILLBOARD\n in vec3 a_color1;\n#endif\n#if CC_USE_MESH\n in vec3 a_texCoord3;\n in vec3 a_normal;\n in vec4 a_color1;\n#endif\nvec4 lpvs_main() {\n vec3 compScale = scale.xyz * a_texCoord1;\n vec4 pos = vec4(a_position, 1);\n#if CC_USE_STRETCHED_BILLBOARD\n vec4 velocity = vec4(a_color1.xyz, 0);\n#endif\n#if !CC_USE_WORLD_SPACE\n pos = cc_matWorld * pos;\n #if CC_USE_STRETCHED_BILLBOARD\n velocity = cc_matWorld * velocity;\n #endif\n#endif\n#if !CC_USE_MESH\n vec2 cornerOffset = vec2((a_texCoord.xy - 0.5));\n #if CC_USE_BILLBOARD\n vec3 rotEuler = a_texCoord2;\n #elif CC_USE_STRETCHED_BILLBOARD\n vec3 rotEuler = vec3(0.);\n #else\n vec3 rotEuler = vec3(0., 0., a_texCoord2.z);\n #endif\n computeVertPos(pos, cornerOffset, quaternionFromEuler(rotEuler), compScale\n #if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , cc_matViewInv\n #endif\n #if CC_USE_STRETCHED_BILLBOARD\n , cc_cameraPos.xyz\n , velocity\n , frameTile_velLenScale.z\n , frameTile_velLenScale.w\n , a_texCoord.x\n #endif\n );\n color = a_color;\n#else\n mat4 xformNoScale = matrixFromRT(quaternionFromEuler(a_texCoord2), pos.xyz);\n mat4 xform = matFromRTS(quaternionFromEuler(a_texCoord2), pos.xyz, compScale);\n pos = xform * vec4(a_texCoord3, 1);\n vec4 normal = xformNoScale * vec4(a_normal, 0);\n color = a_color * a_color1;\n#endif\n uv = computeUV(a_texCoord.z, a_texCoord.xy, frameTile_velLenScale.xy) * mainTiling_Offset.xy + mainTiling_Offset.zw;\n pos = cc_matViewProj * pos;\n return pos;\n}\nvoid main() { gl_Position = lpvs_main(); }",
  506. "frag": "\nprecision highp float;\nvec4 CCFragOutput (vec4 color) {\n #if OUTPUT_TO_GAMMA\n color.rgb = sqrt(color.rgb);\n #endif\n\treturn color;\n}\nin vec2 uv;\nin vec4 color;\nuniform sampler2D mainTexture;\nuniform FragConstants {\n vec4 tintColor;\n};\nvec4 add () {\n vec4 col = 2.0 * color * tintColor * texture(mainTexture, uv);\n return CCFragOutput(col);\n}\nout vec4 cc_FragColor;\nvoid main() { cc_FragColor = add(); }"
  507. },
  508. "glsl1": {
  509. "vert": "\nprecision highp float;\nvec4 quaternionFromAxis(vec3 xAxis,vec3 yAxis,vec3 zAxis){\n mat3 m = mat3(xAxis,yAxis,zAxis);\n float trace = m[0][0] + m[1][1] + m[2][2];\n vec4 quat;\n if (trace > 0.) {\n float s = 0.5 / sqrt(trace + 1.0);\n quat.w = 0.25 / s;\n quat.x = (m[2][1] - m[1][2]) * s;\n quat.y = (m[0][2] - m[2][0]) * s;\n quat.z = (m[1][0] - m[0][1]) * s;\n } else if ((m[0][0] > m[1][1]) && (m[0][0] > m[2][2])) {\n float s = 2.0 * sqrt(1.0 + m[0][0] - m[1][1] - m[2][2]);\n quat.w = (m[2][1] - m[1][2]) / s;\n quat.x = 0.25 * s;\n quat.y = (m[0][1] + m[1][0]) / s;\n quat.z = (m[0][2] + m[2][0]) / s;\n } else if (m[1][1] > m[2][2]) {\n float s = 2.0 * sqrt(1.0 + m[1][1] - m[0][0] - m[2][2]);\n quat.w = (m[0][2] - m[2][0]) / s;\n quat.x = (m[0][1] + m[1][0]) / s;\n quat.y = 0.25 * s;\n quat.z = (m[1][2] + m[2][1]) / s;\n } else {\n float s = 2.0 * sqrt(1.0 + m[2][2] - m[0][0] - m[1][1]);\n quat.w = (m[1][0] - m[0][1]) / s;\n quat.x = (m[0][2] + m[2][0]) / s;\n quat.y = (m[1][2] + m[2][1]) / s;\n quat.z = 0.25 * s;\n }\n float len = quat.x * quat.x + quat.y * quat.y + quat.z * quat.z + quat.w * quat.w;\n if (len > 0.) {\n len = 1. / sqrt(len);\n quat.x = quat.x * len;\n quat.y = quat.y * len;\n quat.z = quat.z * len;\n quat.w = quat.w * len;\n }\n return quat;\n}\nvec4 quaternionFromEuler(vec3 angle){\n float x = angle.x / 2.;\n float y = angle.y / 2.;\n float z = angle.z / 2.;\n float sx = sin(x);\n float cx = cos(x);\n float sy = sin(y);\n float cy = cos(y);\n float sz = sin(z);\n float cz = cos(z);\n vec4 quat = vec4(0);\n quat.x = sx * cy * cz + cx * sy * sz;\n quat.y = cx * sy * cz + sx * cy * sz;\n quat.z = cx * cy * sz - sx * sy * cz;\n quat.w = cx * cy * cz - sx * sy * sz;\n return quat;\n}\nmat4 matrixFromRT(vec4 q, vec3 p){\n float x2 = q.x + q.x;\n float y2 = q.y + q.y;\n float z2 = q.z + q.z;\n float xx = q.x * x2;\n float xy = q.x * y2;\n float xz = q.x * z2;\n float yy = q.y * y2;\n float yz = q.y * z2;\n float zz = q.z * z2;\n float wx = q.w * x2;\n float wy = q.w * y2;\n float wz = q.w * z2;\n return mat4(\n 1. - (yy + zz), xy + wz, xz - wy, 0,\n xy - wz, 1. - (xx + zz), yz + wx, 0,\n xz + wy, yz - wx, 1. - (xx + yy), 0,\n p.x, p.y, p.z, 1\n );\n}\nmat4 matFromRTS(vec4 q, vec3 t, vec3 s){\n float x = q.x, y = q.y, z = q.z, w = q.w;\n float x2 = x + x;\n float y2 = y + y;\n float z2 = z + z;\n float xx = x * x2;\n float xy = x * y2;\n float xz = x * z2;\n float yy = y * y2;\n float yz = y * z2;\n float zz = z * z2;\n float wx = w * x2;\n float wy = w * y2;\n float wz = w * z2;\n float sx = s.x;\n float sy = s.y;\n float sz = s.z;\n return mat4((1. - (yy + zz)) * sx, (xy + wz) * sx, (xz - wy) * sx, 0,\n (xy - wz) * sy, (1. - (xx + zz)) * sy, (yz + wx) * sy, 0,\n (xz + wy) * sz, (yz - wx) * sz, (1. - (xx + yy)) * sz, 0,\n t.x, t.y, t.z, 1);\n}\nvec4 quatMultiply(vec4 a, vec4 b){\n vec4 quat;\n quat.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y;\n quat.y = a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z;\n quat.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x;\n quat.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;\n return quat;\n}\nvoid rotateVecFromQuat(inout vec3 v, vec4 q){\n float ix = q.w * v.x + q.y * v.z - q.z * v.y;\n float iy = q.w * v.y + q.z * v.x - q.x * v.z;\n float iz = q.w * v.z + q.x * v.y - q.y * v.x;\n float iw = -q.x * v.x - q.y * v.y - q.z * v.z;\n v.x = ix * q.w + iw * -q.x + iy * -q.z - iz * -q.y;\n v.y = iy * q.w + iw * -q.y + iz * -q.x - ix * -q.z;\n v.z = iz * q.w + iw * -q.z + ix * -q.y - iy * -q.x;\n}\nvec3 rotateInLocalSpace(vec3 pos, vec3 xAxis, vec3 yAxis, vec3 zAxis, vec4 q){\n float z = pos.z;\n float x = pos.x;\n float y = pos.y;\n vec4 viewQuat = quaternionFromAxis(xAxis, yAxis, zAxis);\n vec4 rotQuat = quatMultiply(viewQuat, q);\n rotateVecFromQuat(pos, rotQuat);\n return pos;\n}\nvoid rotateCorner(inout vec2 corner, float angle){\n float xOS = cos(angle) * corner.x - sin(angle) * corner.y;\n float yOS = sin(angle) * corner.x + cos(angle) * corner.y;\n corner.x = xOS;\n corner.y = yOS;\n}\nuniform vec4 mainTiling_Offset;\nuniform vec4 frameTile_velLenScale;\nuniform vec4 scale;\nuniform mat4 cc_matView;\nuniform mat4 cc_matViewInv;\nuniform mat4 cc_matViewProj;\nuniform vec4 cc_cameraPos;\nuniform mat4 cc_matWorld;\nvarying vec2 uv;\nvarying vec4 color;\nvoid computeVertPos(inout vec4 pos, vec2 vertOffset, vec4 q, vec3 s\n#if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , mat4 viewInv\n#endif\n#if CC_USE_STRETCHED_BILLBOARD\n , vec3 eye\n , vec4 velocity\n , float velocityScale\n , float lengthScale\n , float xIndex\n#endif\n) {\n#if CC_USE_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = normalize(vec3(viewInv[0][0], viewInv[1][0], viewInv[2][0]));\n vec3 camY = normalize(vec3(viewInv[0][1], viewInv[1][1], viewInv[2][1]));\n vec3 camZ = normalize(vec3(viewInv[0][2], viewInv[1][2], viewInv[2][2]));\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, camZ, q);\n#elif CC_USE_STRETCHED_BILLBOARD\n vec3 camRight = normalize(cross(pos.xyz - eye, velocity.xyz)) * s.x;\n vec3 camUp = velocity.xyz * velocityScale + normalize(velocity.xyz) * lengthScale * s.y;\n pos.xyz += (camRight * abs(vertOffset.x) * sign(vertOffset.y)) - camUp * xIndex;\n#elif CC_USE_HORIZONTAL_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = vec3(1, 0, 0);\n vec3 camY = vec3(0, 0, -1);\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, cross(camX, camY), q);\n#elif CC_USE_VERTICAL_BILLBOARD\n vec2 viewSpaceVert = vec2(vertOffset.x * s.x, vertOffset.y * s.y);\n rotateCorner(viewSpaceVert, q.z);\n vec3 camX = normalize(vec3(cc_matView[0][0], cc_matView[1][0], cc_matView[2][0]));\n vec3 camY = vec3(0, 1, 0);\n vec3 offset = camX * viewSpaceVert.x + camY * viewSpaceVert.y;\n pos.xyz += offset;\n#else\n pos.x += vertOffset.x;\n pos.y += vertOffset.y;\n#endif\n}\nvec2 computeUV(float frameIndex, vec2 vertIndex, vec2 frameTile){\n vec2 aniUV = vec2(0, floor(frameIndex * frameTile.y));\n aniUV.x = floor(frameIndex * frameTile.x * frameTile.y - aniUV.y * frameTile.x);\n#if !CC_USE_MESH\n vertIndex.y = 1. - vertIndex.y;\n#endif\n return (aniUV.xy + vertIndex) / vec2(frameTile.x, frameTile.y);\n}\nattribute vec3 a_position;\nattribute vec3 a_texCoord;\nattribute vec3 a_texCoord1;\nattribute vec3 a_texCoord2;\nattribute vec4 a_color;\n#if CC_USE_STRETCHED_BILLBOARD\n attribute vec3 a_color1;\n#endif\n#if CC_USE_MESH\n attribute vec3 a_texCoord3;\n attribute vec3 a_normal;\n attribute vec4 a_color1;\n#endif\nvec4 lpvs_main() {\n vec3 compScale = scale.xyz * a_texCoord1;\n vec4 pos = vec4(a_position, 1);\n#if CC_USE_STRETCHED_BILLBOARD\n vec4 velocity = vec4(a_color1.xyz, 0);\n#endif\n#if !CC_USE_WORLD_SPACE\n pos = cc_matWorld * pos;\n #if CC_USE_STRETCHED_BILLBOARD\n velocity = cc_matWorld * velocity;\n #endif\n#endif\n#if !CC_USE_MESH\n vec2 cornerOffset = vec2((a_texCoord.xy - 0.5));\n #if CC_USE_BILLBOARD\n vec3 rotEuler = a_texCoord2;\n #elif CC_USE_STRETCHED_BILLBOARD\n vec3 rotEuler = vec3(0.);\n #else\n vec3 rotEuler = vec3(0., 0., a_texCoord2.z);\n #endif\n computeVertPos(pos, cornerOffset, quaternionFromEuler(rotEuler), compScale\n #if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , cc_matViewInv\n #endif\n #if CC_USE_STRETCHED_BILLBOARD\n , cc_cameraPos.xyz\n , velocity\n , frameTile_velLenScale.z\n , frameTile_velLenScale.w\n , a_texCoord.x\n #endif\n );\n color = a_color;\n#else\n mat4 xformNoScale = matrixFromRT(quaternionFromEuler(a_texCoord2), pos.xyz);\n mat4 xform = matFromRTS(quaternionFromEuler(a_texCoord2), pos.xyz, compScale);\n pos = xform * vec4(a_texCoord3, 1);\n vec4 normal = xformNoScale * vec4(a_normal, 0);\n color = a_color * a_color1;\n#endif\n uv = computeUV(a_texCoord.z, a_texCoord.xy, frameTile_velLenScale.xy) * mainTiling_Offset.xy + mainTiling_Offset.zw;\n pos = cc_matViewProj * pos;\n return pos;\n}\nvoid main() { gl_Position = lpvs_main(); }",
  510. "frag": "\nprecision highp float;\nvec4 CCFragOutput (vec4 color) {\n #if OUTPUT_TO_GAMMA\n color.rgb = sqrt(color.rgb);\n #endif\n\treturn color;\n}\nvarying vec2 uv;\nvarying vec4 color;\nuniform sampler2D mainTexture;\nuniform vec4 tintColor;\nvec4 add () {\n vec4 col = 2.0 * color * tintColor * texture2D(mainTexture, uv);\n return CCFragOutput(col);\n}\nvoid main() { gl_FragColor = add(); }"
  511. },
  512. "builtins": {
  513. "globals": {
  514. "blocks": [
  515. {
  516. "name": "CCGlobal",
  517. "defines": []
  518. }
  519. ],
  520. "samplers": []
  521. },
  522. "locals": {
  523. "blocks": [
  524. {
  525. "name": "CCLocal",
  526. "defines": []
  527. }
  528. ],
  529. "samplers": []
  530. }
  531. },
  532. "defines": [
  533. {
  534. "name": "CC_USE_BILLBOARD",
  535. "type": "boolean",
  536. "defines": []
  537. },
  538. {
  539. "name": "CC_USE_STRETCHED_BILLBOARD",
  540. "type": "boolean",
  541. "defines": []
  542. },
  543. {
  544. "name": "CC_USE_HORIZONTAL_BILLBOARD",
  545. "type": "boolean",
  546. "defines": []
  547. },
  548. {
  549. "name": "CC_USE_VERTICAL_BILLBOARD",
  550. "type": "boolean",
  551. "defines": []
  552. },
  553. {
  554. "name": "CC_USE_MESH",
  555. "type": "boolean",
  556. "defines": []
  557. },
  558. {
  559. "name": "CC_USE_WORLD_SPACE",
  560. "type": "boolean",
  561. "defines": []
  562. },
  563. {
  564. "name": "OUTPUT_TO_GAMMA",
  565. "type": "boolean",
  566. "defines": []
  567. }
  568. ],
  569. "blocks": [
  570. {
  571. "name": "Constants",
  572. "members": [
  573. {
  574. "name": "mainTiling_Offset",
  575. "type": 16,
  576. "count": 1
  577. },
  578. {
  579. "name": "frameTile_velLenScale",
  580. "type": 16,
  581. "count": 1
  582. },
  583. {
  584. "name": "scale",
  585. "type": 16,
  586. "count": 1
  587. }
  588. ],
  589. "defines": [],
  590. "binding": 0
  591. },
  592. {
  593. "name": "FragConstants",
  594. "members": [
  595. {
  596. "name": "tintColor",
  597. "type": 16,
  598. "count": 1
  599. }
  600. ],
  601. "defines": [],
  602. "binding": 1
  603. }
  604. ],
  605. "samplers": [
  606. {
  607. "name": "mainTexture",
  608. "type": 29,
  609. "count": 1,
  610. "defines": [],
  611. "binding": 30
  612. }
  613. ],
  614. "record": null,
  615. "name": "builtin-3d-particle|particle-vs-legacy:lpvs_main|tinted-fs:add"
  616. },
  617. {
  618. "hash": 1933642753,
  619. "glsl3": {
  620. "vert": "\nprecision highp float;\nvec4 quaternionFromAxis(vec3 xAxis,vec3 yAxis,vec3 zAxis){\n mat3 m = mat3(xAxis,yAxis,zAxis);\n float trace = m[0][0] + m[1][1] + m[2][2];\n vec4 quat;\n if (trace > 0.) {\n float s = 0.5 / sqrt(trace + 1.0);\n quat.w = 0.25 / s;\n quat.x = (m[2][1] - m[1][2]) * s;\n quat.y = (m[0][2] - m[2][0]) * s;\n quat.z = (m[1][0] - m[0][1]) * s;\n } else if ((m[0][0] > m[1][1]) && (m[0][0] > m[2][2])) {\n float s = 2.0 * sqrt(1.0 + m[0][0] - m[1][1] - m[2][2]);\n quat.w = (m[2][1] - m[1][2]) / s;\n quat.x = 0.25 * s;\n quat.y = (m[0][1] + m[1][0]) / s;\n quat.z = (m[0][2] + m[2][0]) / s;\n } else if (m[1][1] > m[2][2]) {\n float s = 2.0 * sqrt(1.0 + m[1][1] - m[0][0] - m[2][2]);\n quat.w = (m[0][2] - m[2][0]) / s;\n quat.x = (m[0][1] + m[1][0]) / s;\n quat.y = 0.25 * s;\n quat.z = (m[1][2] + m[2][1]) / s;\n } else {\n float s = 2.0 * sqrt(1.0 + m[2][2] - m[0][0] - m[1][1]);\n quat.w = (m[1][0] - m[0][1]) / s;\n quat.x = (m[0][2] + m[2][0]) / s;\n quat.y = (m[1][2] + m[2][1]) / s;\n quat.z = 0.25 * s;\n }\n float len = quat.x * quat.x + quat.y * quat.y + quat.z * quat.z + quat.w * quat.w;\n if (len > 0.) {\n len = 1. / sqrt(len);\n quat.x = quat.x * len;\n quat.y = quat.y * len;\n quat.z = quat.z * len;\n quat.w = quat.w * len;\n }\n return quat;\n}\nvec4 quaternionFromEuler(vec3 angle){\n float x = angle.x / 2.;\n float y = angle.y / 2.;\n float z = angle.z / 2.;\n float sx = sin(x);\n float cx = cos(x);\n float sy = sin(y);\n float cy = cos(y);\n float sz = sin(z);\n float cz = cos(z);\n vec4 quat = vec4(0);\n quat.x = sx * cy * cz + cx * sy * sz;\n quat.y = cx * sy * cz + sx * cy * sz;\n quat.z = cx * cy * sz - sx * sy * cz;\n quat.w = cx * cy * cz - sx * sy * sz;\n return quat;\n}\nmat4 matrixFromRT(vec4 q, vec3 p){\n float x2 = q.x + q.x;\n float y2 = q.y + q.y;\n float z2 = q.z + q.z;\n float xx = q.x * x2;\n float xy = q.x * y2;\n float xz = q.x * z2;\n float yy = q.y * y2;\n float yz = q.y * z2;\n float zz = q.z * z2;\n float wx = q.w * x2;\n float wy = q.w * y2;\n float wz = q.w * z2;\n return mat4(\n 1. - (yy + zz), xy + wz, xz - wy, 0,\n xy - wz, 1. - (xx + zz), yz + wx, 0,\n xz + wy, yz - wx, 1. - (xx + yy), 0,\n p.x, p.y, p.z, 1\n );\n}\nmat4 matFromRTS(vec4 q, vec3 t, vec3 s){\n float x = q.x, y = q.y, z = q.z, w = q.w;\n float x2 = x + x;\n float y2 = y + y;\n float z2 = z + z;\n float xx = x * x2;\n float xy = x * y2;\n float xz = x * z2;\n float yy = y * y2;\n float yz = y * z2;\n float zz = z * z2;\n float wx = w * x2;\n float wy = w * y2;\n float wz = w * z2;\n float sx = s.x;\n float sy = s.y;\n float sz = s.z;\n return mat4((1. - (yy + zz)) * sx, (xy + wz) * sx, (xz - wy) * sx, 0,\n (xy - wz) * sy, (1. - (xx + zz)) * sy, (yz + wx) * sy, 0,\n (xz + wy) * sz, (yz - wx) * sz, (1. - (xx + yy)) * sz, 0,\n t.x, t.y, t.z, 1);\n}\nvec4 quatMultiply(vec4 a, vec4 b){\n vec4 quat;\n quat.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y;\n quat.y = a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z;\n quat.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x;\n quat.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;\n return quat;\n}\nvoid rotateVecFromQuat(inout vec3 v, vec4 q){\n float ix = q.w * v.x + q.y * v.z - q.z * v.y;\n float iy = q.w * v.y + q.z * v.x - q.x * v.z;\n float iz = q.w * v.z + q.x * v.y - q.y * v.x;\n float iw = -q.x * v.x - q.y * v.y - q.z * v.z;\n v.x = ix * q.w + iw * -q.x + iy * -q.z - iz * -q.y;\n v.y = iy * q.w + iw * -q.y + iz * -q.x - ix * -q.z;\n v.z = iz * q.w + iw * -q.z + ix * -q.y - iy * -q.x;\n}\nvec3 rotateInLocalSpace(vec3 pos, vec3 xAxis, vec3 yAxis, vec3 zAxis, vec4 q){\n float z = pos.z;\n float x = pos.x;\n float y = pos.y;\n vec4 viewQuat = quaternionFromAxis(xAxis, yAxis, zAxis);\n vec4 rotQuat = quatMultiply(viewQuat, q);\n rotateVecFromQuat(pos, rotQuat);\n return pos;\n}\nvoid rotateCorner(inout vec2 corner, float angle){\n float xOS = cos(angle) * corner.x - sin(angle) * corner.y;\n float yOS = sin(angle) * corner.x + cos(angle) * corner.y;\n corner.x = xOS;\n corner.y = yOS;\n}\nuniform Constants{\n vec4 mainTiling_Offset;\n vec4 frameTile_velLenScale;\n vec4 scale;\n};\nuniform CCGlobal {\n mat4 cc_matView;\n mat4 cc_matViewInv;\n mat4 cc_matProj;\n mat4 cc_matProjInv;\n mat4 cc_matViewProj;\n mat4 cc_matViewProjInv;\n vec4 cc_cameraPos;\n vec4 cc_time;\n mediump vec4 cc_screenSize;\n mediump vec4 cc_screenScale;\n};\nuniform CCLocal {\n mat4 cc_matWorld;\n mat4 cc_matWorldIT;\n};\nout vec2 uv;\nout vec4 color;\nvoid computeVertPos(inout vec4 pos, vec2 vertOffset, vec4 q, vec3 s\n#if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , mat4 viewInv\n#endif\n#if CC_USE_STRETCHED_BILLBOARD\n , vec3 eye\n , vec4 velocity\n , float velocityScale\n , float lengthScale\n , float xIndex\n#endif\n) {\n#if CC_USE_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = normalize(vec3(viewInv[0][0], viewInv[1][0], viewInv[2][0]));\n vec3 camY = normalize(vec3(viewInv[0][1], viewInv[1][1], viewInv[2][1]));\n vec3 camZ = normalize(vec3(viewInv[0][2], viewInv[1][2], viewInv[2][2]));\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, camZ, q);\n#elif CC_USE_STRETCHED_BILLBOARD\n vec3 camRight = normalize(cross(pos.xyz - eye, velocity.xyz)) * s.x;\n vec3 camUp = velocity.xyz * velocityScale + normalize(velocity.xyz) * lengthScale * s.y;\n pos.xyz += (camRight * abs(vertOffset.x) * sign(vertOffset.y)) - camUp * xIndex;\n#elif CC_USE_HORIZONTAL_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = vec3(1, 0, 0);\n vec3 camY = vec3(0, 0, -1);\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, cross(camX, camY), q);\n#elif CC_USE_VERTICAL_BILLBOARD\n vec2 viewSpaceVert = vec2(vertOffset.x * s.x, vertOffset.y * s.y);\n rotateCorner(viewSpaceVert, q.z);\n vec3 camX = normalize(vec3(cc_matView[0][0], cc_matView[1][0], cc_matView[2][0]));\n vec3 camY = vec3(0, 1, 0);\n vec3 offset = camX * viewSpaceVert.x + camY * viewSpaceVert.y;\n pos.xyz += offset;\n#else\n pos.x += vertOffset.x;\n pos.y += vertOffset.y;\n#endif\n}\nvec2 computeUV(float frameIndex, vec2 vertIndex, vec2 frameTile){\n vec2 aniUV = vec2(0, floor(frameIndex * frameTile.y));\n aniUV.x = floor(frameIndex * frameTile.x * frameTile.y - aniUV.y * frameTile.x);\n#if !CC_USE_MESH\n vertIndex.y = 1. - vertIndex.y;\n#endif\n return (aniUV.xy + vertIndex) / vec2(frameTile.x, frameTile.y);\n}\nin vec3 a_position;\nin vec3 a_texCoord;\nin vec3 a_texCoord1;\nin vec3 a_texCoord2;\nin vec4 a_color;\n#if CC_USE_STRETCHED_BILLBOARD\n in vec3 a_color1;\n#endif\n#if CC_USE_MESH\n in vec3 a_texCoord3;\n in vec3 a_normal;\n in vec4 a_color1;\n#endif\nvec4 lpvs_main() {\n vec3 compScale = scale.xyz * a_texCoord1;\n vec4 pos = vec4(a_position, 1);\n#if CC_USE_STRETCHED_BILLBOARD\n vec4 velocity = vec4(a_color1.xyz, 0);\n#endif\n#if !CC_USE_WORLD_SPACE\n pos = cc_matWorld * pos;\n #if CC_USE_STRETCHED_BILLBOARD\n velocity = cc_matWorld * velocity;\n #endif\n#endif\n#if !CC_USE_MESH\n vec2 cornerOffset = vec2((a_texCoord.xy - 0.5));\n #if CC_USE_BILLBOARD\n vec3 rotEuler = a_texCoord2;\n #elif CC_USE_STRETCHED_BILLBOARD\n vec3 rotEuler = vec3(0.);\n #else\n vec3 rotEuler = vec3(0., 0., a_texCoord2.z);\n #endif\n computeVertPos(pos, cornerOffset, quaternionFromEuler(rotEuler), compScale\n #if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , cc_matViewInv\n #endif\n #if CC_USE_STRETCHED_BILLBOARD\n , cc_cameraPos.xyz\n , velocity\n , frameTile_velLenScale.z\n , frameTile_velLenScale.w\n , a_texCoord.x\n #endif\n );\n color = a_color;\n#else\n mat4 xformNoScale = matrixFromRT(quaternionFromEuler(a_texCoord2), pos.xyz);\n mat4 xform = matFromRTS(quaternionFromEuler(a_texCoord2), pos.xyz, compScale);\n pos = xform * vec4(a_texCoord3, 1);\n vec4 normal = xformNoScale * vec4(a_normal, 0);\n color = a_color * a_color1;\n#endif\n uv = computeUV(a_texCoord.z, a_texCoord.xy, frameTile_velLenScale.xy) * mainTiling_Offset.xy + mainTiling_Offset.zw;\n pos = cc_matViewProj * pos;\n return pos;\n}\nvoid main() { gl_Position = lpvs_main(); }",
  621. "frag": "\nprecision highp float;\nvec4 CCFragOutput (vec4 color) {\n #if OUTPUT_TO_GAMMA\n color.rgb = sqrt(color.rgb);\n #endif\n\treturn color;\n}\nin vec2 uv;\nin vec4 color;\nuniform sampler2D mainTexture;\nuniform FragConstants {\n vec4 tintColor;\n};\nvec4 multiply () {\n vec4 col;\n vec4 texColor = texture(mainTexture, uv);\n col.rgb = tintColor.rgb * texColor.rgb * color.rgb * vec3(2.0);\n col.a = (1.0 - texColor.a) * (tintColor.a * color.a * 2.0);\n return CCFragOutput(col);\n}\nout vec4 cc_FragColor;\nvoid main() { cc_FragColor = multiply(); }"
  622. },
  623. "glsl1": {
  624. "vert": "\nprecision highp float;\nvec4 quaternionFromAxis(vec3 xAxis,vec3 yAxis,vec3 zAxis){\n mat3 m = mat3(xAxis,yAxis,zAxis);\n float trace = m[0][0] + m[1][1] + m[2][2];\n vec4 quat;\n if (trace > 0.) {\n float s = 0.5 / sqrt(trace + 1.0);\n quat.w = 0.25 / s;\n quat.x = (m[2][1] - m[1][2]) * s;\n quat.y = (m[0][2] - m[2][0]) * s;\n quat.z = (m[1][0] - m[0][1]) * s;\n } else if ((m[0][0] > m[1][1]) && (m[0][0] > m[2][2])) {\n float s = 2.0 * sqrt(1.0 + m[0][0] - m[1][1] - m[2][2]);\n quat.w = (m[2][1] - m[1][2]) / s;\n quat.x = 0.25 * s;\n quat.y = (m[0][1] + m[1][0]) / s;\n quat.z = (m[0][2] + m[2][0]) / s;\n } else if (m[1][1] > m[2][2]) {\n float s = 2.0 * sqrt(1.0 + m[1][1] - m[0][0] - m[2][2]);\n quat.w = (m[0][2] - m[2][0]) / s;\n quat.x = (m[0][1] + m[1][0]) / s;\n quat.y = 0.25 * s;\n quat.z = (m[1][2] + m[2][1]) / s;\n } else {\n float s = 2.0 * sqrt(1.0 + m[2][2] - m[0][0] - m[1][1]);\n quat.w = (m[1][0] - m[0][1]) / s;\n quat.x = (m[0][2] + m[2][0]) / s;\n quat.y = (m[1][2] + m[2][1]) / s;\n quat.z = 0.25 * s;\n }\n float len = quat.x * quat.x + quat.y * quat.y + quat.z * quat.z + quat.w * quat.w;\n if (len > 0.) {\n len = 1. / sqrt(len);\n quat.x = quat.x * len;\n quat.y = quat.y * len;\n quat.z = quat.z * len;\n quat.w = quat.w * len;\n }\n return quat;\n}\nvec4 quaternionFromEuler(vec3 angle){\n float x = angle.x / 2.;\n float y = angle.y / 2.;\n float z = angle.z / 2.;\n float sx = sin(x);\n float cx = cos(x);\n float sy = sin(y);\n float cy = cos(y);\n float sz = sin(z);\n float cz = cos(z);\n vec4 quat = vec4(0);\n quat.x = sx * cy * cz + cx * sy * sz;\n quat.y = cx * sy * cz + sx * cy * sz;\n quat.z = cx * cy * sz - sx * sy * cz;\n quat.w = cx * cy * cz - sx * sy * sz;\n return quat;\n}\nmat4 matrixFromRT(vec4 q, vec3 p){\n float x2 = q.x + q.x;\n float y2 = q.y + q.y;\n float z2 = q.z + q.z;\n float xx = q.x * x2;\n float xy = q.x * y2;\n float xz = q.x * z2;\n float yy = q.y * y2;\n float yz = q.y * z2;\n float zz = q.z * z2;\n float wx = q.w * x2;\n float wy = q.w * y2;\n float wz = q.w * z2;\n return mat4(\n 1. - (yy + zz), xy + wz, xz - wy, 0,\n xy - wz, 1. - (xx + zz), yz + wx, 0,\n xz + wy, yz - wx, 1. - (xx + yy), 0,\n p.x, p.y, p.z, 1\n );\n}\nmat4 matFromRTS(vec4 q, vec3 t, vec3 s){\n float x = q.x, y = q.y, z = q.z, w = q.w;\n float x2 = x + x;\n float y2 = y + y;\n float z2 = z + z;\n float xx = x * x2;\n float xy = x * y2;\n float xz = x * z2;\n float yy = y * y2;\n float yz = y * z2;\n float zz = z * z2;\n float wx = w * x2;\n float wy = w * y2;\n float wz = w * z2;\n float sx = s.x;\n float sy = s.y;\n float sz = s.z;\n return mat4((1. - (yy + zz)) * sx, (xy + wz) * sx, (xz - wy) * sx, 0,\n (xy - wz) * sy, (1. - (xx + zz)) * sy, (yz + wx) * sy, 0,\n (xz + wy) * sz, (yz - wx) * sz, (1. - (xx + yy)) * sz, 0,\n t.x, t.y, t.z, 1);\n}\nvec4 quatMultiply(vec4 a, vec4 b){\n vec4 quat;\n quat.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y;\n quat.y = a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z;\n quat.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x;\n quat.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;\n return quat;\n}\nvoid rotateVecFromQuat(inout vec3 v, vec4 q){\n float ix = q.w * v.x + q.y * v.z - q.z * v.y;\n float iy = q.w * v.y + q.z * v.x - q.x * v.z;\n float iz = q.w * v.z + q.x * v.y - q.y * v.x;\n float iw = -q.x * v.x - q.y * v.y - q.z * v.z;\n v.x = ix * q.w + iw * -q.x + iy * -q.z - iz * -q.y;\n v.y = iy * q.w + iw * -q.y + iz * -q.x - ix * -q.z;\n v.z = iz * q.w + iw * -q.z + ix * -q.y - iy * -q.x;\n}\nvec3 rotateInLocalSpace(vec3 pos, vec3 xAxis, vec3 yAxis, vec3 zAxis, vec4 q){\n float z = pos.z;\n float x = pos.x;\n float y = pos.y;\n vec4 viewQuat = quaternionFromAxis(xAxis, yAxis, zAxis);\n vec4 rotQuat = quatMultiply(viewQuat, q);\n rotateVecFromQuat(pos, rotQuat);\n return pos;\n}\nvoid rotateCorner(inout vec2 corner, float angle){\n float xOS = cos(angle) * corner.x - sin(angle) * corner.y;\n float yOS = sin(angle) * corner.x + cos(angle) * corner.y;\n corner.x = xOS;\n corner.y = yOS;\n}\nuniform vec4 mainTiling_Offset;\nuniform vec4 frameTile_velLenScale;\nuniform vec4 scale;\nuniform mat4 cc_matView;\nuniform mat4 cc_matViewInv;\nuniform mat4 cc_matViewProj;\nuniform vec4 cc_cameraPos;\nuniform mat4 cc_matWorld;\nvarying vec2 uv;\nvarying vec4 color;\nvoid computeVertPos(inout vec4 pos, vec2 vertOffset, vec4 q, vec3 s\n#if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , mat4 viewInv\n#endif\n#if CC_USE_STRETCHED_BILLBOARD\n , vec3 eye\n , vec4 velocity\n , float velocityScale\n , float lengthScale\n , float xIndex\n#endif\n) {\n#if CC_USE_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = normalize(vec3(viewInv[0][0], viewInv[1][0], viewInv[2][0]));\n vec3 camY = normalize(vec3(viewInv[0][1], viewInv[1][1], viewInv[2][1]));\n vec3 camZ = normalize(vec3(viewInv[0][2], viewInv[1][2], viewInv[2][2]));\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, camZ, q);\n#elif CC_USE_STRETCHED_BILLBOARD\n vec3 camRight = normalize(cross(pos.xyz - eye, velocity.xyz)) * s.x;\n vec3 camUp = velocity.xyz * velocityScale + normalize(velocity.xyz) * lengthScale * s.y;\n pos.xyz += (camRight * abs(vertOffset.x) * sign(vertOffset.y)) - camUp * xIndex;\n#elif CC_USE_HORIZONTAL_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = vec3(1, 0, 0);\n vec3 camY = vec3(0, 0, -1);\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, cross(camX, camY), q);\n#elif CC_USE_VERTICAL_BILLBOARD\n vec2 viewSpaceVert = vec2(vertOffset.x * s.x, vertOffset.y * s.y);\n rotateCorner(viewSpaceVert, q.z);\n vec3 camX = normalize(vec3(cc_matView[0][0], cc_matView[1][0], cc_matView[2][0]));\n vec3 camY = vec3(0, 1, 0);\n vec3 offset = camX * viewSpaceVert.x + camY * viewSpaceVert.y;\n pos.xyz += offset;\n#else\n pos.x += vertOffset.x;\n pos.y += vertOffset.y;\n#endif\n}\nvec2 computeUV(float frameIndex, vec2 vertIndex, vec2 frameTile){\n vec2 aniUV = vec2(0, floor(frameIndex * frameTile.y));\n aniUV.x = floor(frameIndex * frameTile.x * frameTile.y - aniUV.y * frameTile.x);\n#if !CC_USE_MESH\n vertIndex.y = 1. - vertIndex.y;\n#endif\n return (aniUV.xy + vertIndex) / vec2(frameTile.x, frameTile.y);\n}\nattribute vec3 a_position;\nattribute vec3 a_texCoord;\nattribute vec3 a_texCoord1;\nattribute vec3 a_texCoord2;\nattribute vec4 a_color;\n#if CC_USE_STRETCHED_BILLBOARD\n attribute vec3 a_color1;\n#endif\n#if CC_USE_MESH\n attribute vec3 a_texCoord3;\n attribute vec3 a_normal;\n attribute vec4 a_color1;\n#endif\nvec4 lpvs_main() {\n vec3 compScale = scale.xyz * a_texCoord1;\n vec4 pos = vec4(a_position, 1);\n#if CC_USE_STRETCHED_BILLBOARD\n vec4 velocity = vec4(a_color1.xyz, 0);\n#endif\n#if !CC_USE_WORLD_SPACE\n pos = cc_matWorld * pos;\n #if CC_USE_STRETCHED_BILLBOARD\n velocity = cc_matWorld * velocity;\n #endif\n#endif\n#if !CC_USE_MESH\n vec2 cornerOffset = vec2((a_texCoord.xy - 0.5));\n #if CC_USE_BILLBOARD\n vec3 rotEuler = a_texCoord2;\n #elif CC_USE_STRETCHED_BILLBOARD\n vec3 rotEuler = vec3(0.);\n #else\n vec3 rotEuler = vec3(0., 0., a_texCoord2.z);\n #endif\n computeVertPos(pos, cornerOffset, quaternionFromEuler(rotEuler), compScale\n #if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , cc_matViewInv\n #endif\n #if CC_USE_STRETCHED_BILLBOARD\n , cc_cameraPos.xyz\n , velocity\n , frameTile_velLenScale.z\n , frameTile_velLenScale.w\n , a_texCoord.x\n #endif\n );\n color = a_color;\n#else\n mat4 xformNoScale = matrixFromRT(quaternionFromEuler(a_texCoord2), pos.xyz);\n mat4 xform = matFromRTS(quaternionFromEuler(a_texCoord2), pos.xyz, compScale);\n pos = xform * vec4(a_texCoord3, 1);\n vec4 normal = xformNoScale * vec4(a_normal, 0);\n color = a_color * a_color1;\n#endif\n uv = computeUV(a_texCoord.z, a_texCoord.xy, frameTile_velLenScale.xy) * mainTiling_Offset.xy + mainTiling_Offset.zw;\n pos = cc_matViewProj * pos;\n return pos;\n}\nvoid main() { gl_Position = lpvs_main(); }",
  625. "frag": "\nprecision highp float;\nvec4 CCFragOutput (vec4 color) {\n #if OUTPUT_TO_GAMMA\n color.rgb = sqrt(color.rgb);\n #endif\n\treturn color;\n}\nvarying vec2 uv;\nvarying vec4 color;\nuniform sampler2D mainTexture;\nuniform vec4 tintColor;\nvec4 multiply () {\n vec4 col;\n vec4 texColor = texture2D(mainTexture, uv);\n col.rgb = tintColor.rgb * texColor.rgb * color.rgb * vec3(2.0);\n col.a = (1.0 - texColor.a) * (tintColor.a * color.a * 2.0);\n return CCFragOutput(col);\n}\nvoid main() { gl_FragColor = multiply(); }"
  626. },
  627. "builtins": {
  628. "globals": {
  629. "blocks": [
  630. {
  631. "name": "CCGlobal",
  632. "defines": []
  633. }
  634. ],
  635. "samplers": []
  636. },
  637. "locals": {
  638. "blocks": [
  639. {
  640. "name": "CCLocal",
  641. "defines": []
  642. }
  643. ],
  644. "samplers": []
  645. }
  646. },
  647. "defines": [
  648. {
  649. "name": "CC_USE_BILLBOARD",
  650. "type": "boolean",
  651. "defines": []
  652. },
  653. {
  654. "name": "CC_USE_STRETCHED_BILLBOARD",
  655. "type": "boolean",
  656. "defines": []
  657. },
  658. {
  659. "name": "CC_USE_HORIZONTAL_BILLBOARD",
  660. "type": "boolean",
  661. "defines": []
  662. },
  663. {
  664. "name": "CC_USE_VERTICAL_BILLBOARD",
  665. "type": "boolean",
  666. "defines": []
  667. },
  668. {
  669. "name": "CC_USE_MESH",
  670. "type": "boolean",
  671. "defines": []
  672. },
  673. {
  674. "name": "CC_USE_WORLD_SPACE",
  675. "type": "boolean",
  676. "defines": []
  677. },
  678. {
  679. "name": "OUTPUT_TO_GAMMA",
  680. "type": "boolean",
  681. "defines": []
  682. }
  683. ],
  684. "blocks": [
  685. {
  686. "name": "Constants",
  687. "members": [
  688. {
  689. "name": "mainTiling_Offset",
  690. "type": 16,
  691. "count": 1
  692. },
  693. {
  694. "name": "frameTile_velLenScale",
  695. "type": 16,
  696. "count": 1
  697. },
  698. {
  699. "name": "scale",
  700. "type": 16,
  701. "count": 1
  702. }
  703. ],
  704. "defines": [],
  705. "binding": 0
  706. },
  707. {
  708. "name": "FragConstants",
  709. "members": [
  710. {
  711. "name": "tintColor",
  712. "type": 16,
  713. "count": 1
  714. }
  715. ],
  716. "defines": [],
  717. "binding": 1
  718. }
  719. ],
  720. "samplers": [
  721. {
  722. "name": "mainTexture",
  723. "type": 29,
  724. "count": 1,
  725. "defines": [],
  726. "binding": 30
  727. }
  728. ],
  729. "record": null,
  730. "name": "builtin-3d-particle|particle-vs-legacy:lpvs_main|tinted-fs:multiply"
  731. },
  732. {
  733. "hash": 1851787849,
  734. "glsl3": {
  735. "vert": "\nprecision highp float;\nvec4 quaternionFromAxis(vec3 xAxis,vec3 yAxis,vec3 zAxis){\n mat3 m = mat3(xAxis,yAxis,zAxis);\n float trace = m[0][0] + m[1][1] + m[2][2];\n vec4 quat;\n if (trace > 0.) {\n float s = 0.5 / sqrt(trace + 1.0);\n quat.w = 0.25 / s;\n quat.x = (m[2][1] - m[1][2]) * s;\n quat.y = (m[0][2] - m[2][0]) * s;\n quat.z = (m[1][0] - m[0][1]) * s;\n } else if ((m[0][0] > m[1][1]) && (m[0][0] > m[2][2])) {\n float s = 2.0 * sqrt(1.0 + m[0][0] - m[1][1] - m[2][2]);\n quat.w = (m[2][1] - m[1][2]) / s;\n quat.x = 0.25 * s;\n quat.y = (m[0][1] + m[1][0]) / s;\n quat.z = (m[0][2] + m[2][0]) / s;\n } else if (m[1][1] > m[2][2]) {\n float s = 2.0 * sqrt(1.0 + m[1][1] - m[0][0] - m[2][2]);\n quat.w = (m[0][2] - m[2][0]) / s;\n quat.x = (m[0][1] + m[1][0]) / s;\n quat.y = 0.25 * s;\n quat.z = (m[1][2] + m[2][1]) / s;\n } else {\n float s = 2.0 * sqrt(1.0 + m[2][2] - m[0][0] - m[1][1]);\n quat.w = (m[1][0] - m[0][1]) / s;\n quat.x = (m[0][2] + m[2][0]) / s;\n quat.y = (m[1][2] + m[2][1]) / s;\n quat.z = 0.25 * s;\n }\n float len = quat.x * quat.x + quat.y * quat.y + quat.z * quat.z + quat.w * quat.w;\n if (len > 0.) {\n len = 1. / sqrt(len);\n quat.x = quat.x * len;\n quat.y = quat.y * len;\n quat.z = quat.z * len;\n quat.w = quat.w * len;\n }\n return quat;\n}\nvec4 quaternionFromEuler(vec3 angle){\n float x = angle.x / 2.;\n float y = angle.y / 2.;\n float z = angle.z / 2.;\n float sx = sin(x);\n float cx = cos(x);\n float sy = sin(y);\n float cy = cos(y);\n float sz = sin(z);\n float cz = cos(z);\n vec4 quat = vec4(0);\n quat.x = sx * cy * cz + cx * sy * sz;\n quat.y = cx * sy * cz + sx * cy * sz;\n quat.z = cx * cy * sz - sx * sy * cz;\n quat.w = cx * cy * cz - sx * sy * sz;\n return quat;\n}\nmat4 matrixFromRT(vec4 q, vec3 p){\n float x2 = q.x + q.x;\n float y2 = q.y + q.y;\n float z2 = q.z + q.z;\n float xx = q.x * x2;\n float xy = q.x * y2;\n float xz = q.x * z2;\n float yy = q.y * y2;\n float yz = q.y * z2;\n float zz = q.z * z2;\n float wx = q.w * x2;\n float wy = q.w * y2;\n float wz = q.w * z2;\n return mat4(\n 1. - (yy + zz), xy + wz, xz - wy, 0,\n xy - wz, 1. - (xx + zz), yz + wx, 0,\n xz + wy, yz - wx, 1. - (xx + yy), 0,\n p.x, p.y, p.z, 1\n );\n}\nmat4 matFromRTS(vec4 q, vec3 t, vec3 s){\n float x = q.x, y = q.y, z = q.z, w = q.w;\n float x2 = x + x;\n float y2 = y + y;\n float z2 = z + z;\n float xx = x * x2;\n float xy = x * y2;\n float xz = x * z2;\n float yy = y * y2;\n float yz = y * z2;\n float zz = z * z2;\n float wx = w * x2;\n float wy = w * y2;\n float wz = w * z2;\n float sx = s.x;\n float sy = s.y;\n float sz = s.z;\n return mat4((1. - (yy + zz)) * sx, (xy + wz) * sx, (xz - wy) * sx, 0,\n (xy - wz) * sy, (1. - (xx + zz)) * sy, (yz + wx) * sy, 0,\n (xz + wy) * sz, (yz - wx) * sz, (1. - (xx + yy)) * sz, 0,\n t.x, t.y, t.z, 1);\n}\nvec4 quatMultiply(vec4 a, vec4 b){\n vec4 quat;\n quat.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y;\n quat.y = a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z;\n quat.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x;\n quat.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;\n return quat;\n}\nvoid rotateVecFromQuat(inout vec3 v, vec4 q){\n float ix = q.w * v.x + q.y * v.z - q.z * v.y;\n float iy = q.w * v.y + q.z * v.x - q.x * v.z;\n float iz = q.w * v.z + q.x * v.y - q.y * v.x;\n float iw = -q.x * v.x - q.y * v.y - q.z * v.z;\n v.x = ix * q.w + iw * -q.x + iy * -q.z - iz * -q.y;\n v.y = iy * q.w + iw * -q.y + iz * -q.x - ix * -q.z;\n v.z = iz * q.w + iw * -q.z + ix * -q.y - iy * -q.x;\n}\nvec3 rotateInLocalSpace(vec3 pos, vec3 xAxis, vec3 yAxis, vec3 zAxis, vec4 q){\n float z = pos.z;\n float x = pos.x;\n float y = pos.y;\n vec4 viewQuat = quaternionFromAxis(xAxis, yAxis, zAxis);\n vec4 rotQuat = quatMultiply(viewQuat, q);\n rotateVecFromQuat(pos, rotQuat);\n return pos;\n}\nvoid rotateCorner(inout vec2 corner, float angle){\n float xOS = cos(angle) * corner.x - sin(angle) * corner.y;\n float yOS = sin(angle) * corner.x + cos(angle) * corner.y;\n corner.x = xOS;\n corner.y = yOS;\n}\nuniform Constants{\n vec4 mainTiling_Offset;\n vec4 frameTile_velLenScale;\n vec4 scale;\n};\nuniform CCGlobal {\n mat4 cc_matView;\n mat4 cc_matViewInv;\n mat4 cc_matProj;\n mat4 cc_matProjInv;\n mat4 cc_matViewProj;\n mat4 cc_matViewProjInv;\n vec4 cc_cameraPos;\n vec4 cc_time;\n mediump vec4 cc_screenSize;\n mediump vec4 cc_screenScale;\n};\nuniform CCLocal {\n mat4 cc_matWorld;\n mat4 cc_matWorldIT;\n};\nout vec2 uv;\nout vec4 color;\nvoid computeVertPos(inout vec4 pos, vec2 vertOffset, vec4 q, vec3 s\n#if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , mat4 viewInv\n#endif\n#if CC_USE_STRETCHED_BILLBOARD\n , vec3 eye\n , vec4 velocity\n , float velocityScale\n , float lengthScale\n , float xIndex\n#endif\n) {\n#if CC_USE_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = normalize(vec3(viewInv[0][0], viewInv[1][0], viewInv[2][0]));\n vec3 camY = normalize(vec3(viewInv[0][1], viewInv[1][1], viewInv[2][1]));\n vec3 camZ = normalize(vec3(viewInv[0][2], viewInv[1][2], viewInv[2][2]));\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, camZ, q);\n#elif CC_USE_STRETCHED_BILLBOARD\n vec3 camRight = normalize(cross(pos.xyz - eye, velocity.xyz)) * s.x;\n vec3 camUp = velocity.xyz * velocityScale + normalize(velocity.xyz) * lengthScale * s.y;\n pos.xyz += (camRight * abs(vertOffset.x) * sign(vertOffset.y)) - camUp * xIndex;\n#elif CC_USE_HORIZONTAL_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = vec3(1, 0, 0);\n vec3 camY = vec3(0, 0, -1);\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, cross(camX, camY), q);\n#elif CC_USE_VERTICAL_BILLBOARD\n vec2 viewSpaceVert = vec2(vertOffset.x * s.x, vertOffset.y * s.y);\n rotateCorner(viewSpaceVert, q.z);\n vec3 camX = normalize(vec3(cc_matView[0][0], cc_matView[1][0], cc_matView[2][0]));\n vec3 camY = vec3(0, 1, 0);\n vec3 offset = camX * viewSpaceVert.x + camY * viewSpaceVert.y;\n pos.xyz += offset;\n#else\n pos.x += vertOffset.x;\n pos.y += vertOffset.y;\n#endif\n}\nvec2 computeUV(float frameIndex, vec2 vertIndex, vec2 frameTile){\n vec2 aniUV = vec2(0, floor(frameIndex * frameTile.y));\n aniUV.x = floor(frameIndex * frameTile.x * frameTile.y - aniUV.y * frameTile.x);\n#if !CC_USE_MESH\n vertIndex.y = 1. - vertIndex.y;\n#endif\n return (aniUV.xy + vertIndex) / vec2(frameTile.x, frameTile.y);\n}\nin vec3 a_position;\nin vec3 a_texCoord;\nin vec3 a_texCoord1;\nin vec3 a_texCoord2;\nin vec4 a_color;\n#if CC_USE_STRETCHED_BILLBOARD\n in vec3 a_color1;\n#endif\n#if CC_USE_MESH\n in vec3 a_texCoord3;\n in vec3 a_normal;\n in vec4 a_color1;\n#endif\nvec4 lpvs_main() {\n vec3 compScale = scale.xyz * a_texCoord1;\n vec4 pos = vec4(a_position, 1);\n#if CC_USE_STRETCHED_BILLBOARD\n vec4 velocity = vec4(a_color1.xyz, 0);\n#endif\n#if !CC_USE_WORLD_SPACE\n pos = cc_matWorld * pos;\n #if CC_USE_STRETCHED_BILLBOARD\n velocity = cc_matWorld * velocity;\n #endif\n#endif\n#if !CC_USE_MESH\n vec2 cornerOffset = vec2((a_texCoord.xy - 0.5));\n #if CC_USE_BILLBOARD\n vec3 rotEuler = a_texCoord2;\n #elif CC_USE_STRETCHED_BILLBOARD\n vec3 rotEuler = vec3(0.);\n #else\n vec3 rotEuler = vec3(0., 0., a_texCoord2.z);\n #endif\n computeVertPos(pos, cornerOffset, quaternionFromEuler(rotEuler), compScale\n #if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , cc_matViewInv\n #endif\n #if CC_USE_STRETCHED_BILLBOARD\n , cc_cameraPos.xyz\n , velocity\n , frameTile_velLenScale.z\n , frameTile_velLenScale.w\n , a_texCoord.x\n #endif\n );\n color = a_color;\n#else\n mat4 xformNoScale = matrixFromRT(quaternionFromEuler(a_texCoord2), pos.xyz);\n mat4 xform = matFromRTS(quaternionFromEuler(a_texCoord2), pos.xyz, compScale);\n pos = xform * vec4(a_texCoord3, 1);\n vec4 normal = xformNoScale * vec4(a_normal, 0);\n color = a_color * a_color1;\n#endif\n uv = computeUV(a_texCoord.z, a_texCoord.xy, frameTile_velLenScale.xy) * mainTiling_Offset.xy + mainTiling_Offset.zw;\n pos = cc_matViewProj * pos;\n return pos;\n}\nvoid main() { gl_Position = lpvs_main(); }",
  736. "frag": "\nprecision highp float;\nvec4 CCFragOutput (vec4 color) {\n #if OUTPUT_TO_GAMMA\n color.rgb = sqrt(color.rgb);\n #endif\n\treturn color;\n}\nin vec2 uv;\nin vec4 color;\nuniform sampler2D mainTexture;\nvec4 addSmooth () {\n vec4 col = color * texture(mainTexture, uv);\n col.rgb *= col.a;\n return CCFragOutput(col);\n}\nout vec4 cc_FragColor;\nvoid main() { cc_FragColor = addSmooth(); }"
  737. },
  738. "glsl1": {
  739. "vert": "\nprecision highp float;\nvec4 quaternionFromAxis(vec3 xAxis,vec3 yAxis,vec3 zAxis){\n mat3 m = mat3(xAxis,yAxis,zAxis);\n float trace = m[0][0] + m[1][1] + m[2][2];\n vec4 quat;\n if (trace > 0.) {\n float s = 0.5 / sqrt(trace + 1.0);\n quat.w = 0.25 / s;\n quat.x = (m[2][1] - m[1][2]) * s;\n quat.y = (m[0][2] - m[2][0]) * s;\n quat.z = (m[1][0] - m[0][1]) * s;\n } else if ((m[0][0] > m[1][1]) && (m[0][0] > m[2][2])) {\n float s = 2.0 * sqrt(1.0 + m[0][0] - m[1][1] - m[2][2]);\n quat.w = (m[2][1] - m[1][2]) / s;\n quat.x = 0.25 * s;\n quat.y = (m[0][1] + m[1][0]) / s;\n quat.z = (m[0][2] + m[2][0]) / s;\n } else if (m[1][1] > m[2][2]) {\n float s = 2.0 * sqrt(1.0 + m[1][1] - m[0][0] - m[2][2]);\n quat.w = (m[0][2] - m[2][0]) / s;\n quat.x = (m[0][1] + m[1][0]) / s;\n quat.y = 0.25 * s;\n quat.z = (m[1][2] + m[2][1]) / s;\n } else {\n float s = 2.0 * sqrt(1.0 + m[2][2] - m[0][0] - m[1][1]);\n quat.w = (m[1][0] - m[0][1]) / s;\n quat.x = (m[0][2] + m[2][0]) / s;\n quat.y = (m[1][2] + m[2][1]) / s;\n quat.z = 0.25 * s;\n }\n float len = quat.x * quat.x + quat.y * quat.y + quat.z * quat.z + quat.w * quat.w;\n if (len > 0.) {\n len = 1. / sqrt(len);\n quat.x = quat.x * len;\n quat.y = quat.y * len;\n quat.z = quat.z * len;\n quat.w = quat.w * len;\n }\n return quat;\n}\nvec4 quaternionFromEuler(vec3 angle){\n float x = angle.x / 2.;\n float y = angle.y / 2.;\n float z = angle.z / 2.;\n float sx = sin(x);\n float cx = cos(x);\n float sy = sin(y);\n float cy = cos(y);\n float sz = sin(z);\n float cz = cos(z);\n vec4 quat = vec4(0);\n quat.x = sx * cy * cz + cx * sy * sz;\n quat.y = cx * sy * cz + sx * cy * sz;\n quat.z = cx * cy * sz - sx * sy * cz;\n quat.w = cx * cy * cz - sx * sy * sz;\n return quat;\n}\nmat4 matrixFromRT(vec4 q, vec3 p){\n float x2 = q.x + q.x;\n float y2 = q.y + q.y;\n float z2 = q.z + q.z;\n float xx = q.x * x2;\n float xy = q.x * y2;\n float xz = q.x * z2;\n float yy = q.y * y2;\n float yz = q.y * z2;\n float zz = q.z * z2;\n float wx = q.w * x2;\n float wy = q.w * y2;\n float wz = q.w * z2;\n return mat4(\n 1. - (yy + zz), xy + wz, xz - wy, 0,\n xy - wz, 1. - (xx + zz), yz + wx, 0,\n xz + wy, yz - wx, 1. - (xx + yy), 0,\n p.x, p.y, p.z, 1\n );\n}\nmat4 matFromRTS(vec4 q, vec3 t, vec3 s){\n float x = q.x, y = q.y, z = q.z, w = q.w;\n float x2 = x + x;\n float y2 = y + y;\n float z2 = z + z;\n float xx = x * x2;\n float xy = x * y2;\n float xz = x * z2;\n float yy = y * y2;\n float yz = y * z2;\n float zz = z * z2;\n float wx = w * x2;\n float wy = w * y2;\n float wz = w * z2;\n float sx = s.x;\n float sy = s.y;\n float sz = s.z;\n return mat4((1. - (yy + zz)) * sx, (xy + wz) * sx, (xz - wy) * sx, 0,\n (xy - wz) * sy, (1. - (xx + zz)) * sy, (yz + wx) * sy, 0,\n (xz + wy) * sz, (yz - wx) * sz, (1. - (xx + yy)) * sz, 0,\n t.x, t.y, t.z, 1);\n}\nvec4 quatMultiply(vec4 a, vec4 b){\n vec4 quat;\n quat.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y;\n quat.y = a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z;\n quat.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x;\n quat.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;\n return quat;\n}\nvoid rotateVecFromQuat(inout vec3 v, vec4 q){\n float ix = q.w * v.x + q.y * v.z - q.z * v.y;\n float iy = q.w * v.y + q.z * v.x - q.x * v.z;\n float iz = q.w * v.z + q.x * v.y - q.y * v.x;\n float iw = -q.x * v.x - q.y * v.y - q.z * v.z;\n v.x = ix * q.w + iw * -q.x + iy * -q.z - iz * -q.y;\n v.y = iy * q.w + iw * -q.y + iz * -q.x - ix * -q.z;\n v.z = iz * q.w + iw * -q.z + ix * -q.y - iy * -q.x;\n}\nvec3 rotateInLocalSpace(vec3 pos, vec3 xAxis, vec3 yAxis, vec3 zAxis, vec4 q){\n float z = pos.z;\n float x = pos.x;\n float y = pos.y;\n vec4 viewQuat = quaternionFromAxis(xAxis, yAxis, zAxis);\n vec4 rotQuat = quatMultiply(viewQuat, q);\n rotateVecFromQuat(pos, rotQuat);\n return pos;\n}\nvoid rotateCorner(inout vec2 corner, float angle){\n float xOS = cos(angle) * corner.x - sin(angle) * corner.y;\n float yOS = sin(angle) * corner.x + cos(angle) * corner.y;\n corner.x = xOS;\n corner.y = yOS;\n}\nuniform vec4 mainTiling_Offset;\nuniform vec4 frameTile_velLenScale;\nuniform vec4 scale;\nuniform mat4 cc_matView;\nuniform mat4 cc_matViewInv;\nuniform mat4 cc_matViewProj;\nuniform vec4 cc_cameraPos;\nuniform mat4 cc_matWorld;\nvarying vec2 uv;\nvarying vec4 color;\nvoid computeVertPos(inout vec4 pos, vec2 vertOffset, vec4 q, vec3 s\n#if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , mat4 viewInv\n#endif\n#if CC_USE_STRETCHED_BILLBOARD\n , vec3 eye\n , vec4 velocity\n , float velocityScale\n , float lengthScale\n , float xIndex\n#endif\n) {\n#if CC_USE_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = normalize(vec3(viewInv[0][0], viewInv[1][0], viewInv[2][0]));\n vec3 camY = normalize(vec3(viewInv[0][1], viewInv[1][1], viewInv[2][1]));\n vec3 camZ = normalize(vec3(viewInv[0][2], viewInv[1][2], viewInv[2][2]));\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, camZ, q);\n#elif CC_USE_STRETCHED_BILLBOARD\n vec3 camRight = normalize(cross(pos.xyz - eye, velocity.xyz)) * s.x;\n vec3 camUp = velocity.xyz * velocityScale + normalize(velocity.xyz) * lengthScale * s.y;\n pos.xyz += (camRight * abs(vertOffset.x) * sign(vertOffset.y)) - camUp * xIndex;\n#elif CC_USE_HORIZONTAL_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = vec3(1, 0, 0);\n vec3 camY = vec3(0, 0, -1);\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, cross(camX, camY), q);\n#elif CC_USE_VERTICAL_BILLBOARD\n vec2 viewSpaceVert = vec2(vertOffset.x * s.x, vertOffset.y * s.y);\n rotateCorner(viewSpaceVert, q.z);\n vec3 camX = normalize(vec3(cc_matView[0][0], cc_matView[1][0], cc_matView[2][0]));\n vec3 camY = vec3(0, 1, 0);\n vec3 offset = camX * viewSpaceVert.x + camY * viewSpaceVert.y;\n pos.xyz += offset;\n#else\n pos.x += vertOffset.x;\n pos.y += vertOffset.y;\n#endif\n}\nvec2 computeUV(float frameIndex, vec2 vertIndex, vec2 frameTile){\n vec2 aniUV = vec2(0, floor(frameIndex * frameTile.y));\n aniUV.x = floor(frameIndex * frameTile.x * frameTile.y - aniUV.y * frameTile.x);\n#if !CC_USE_MESH\n vertIndex.y = 1. - vertIndex.y;\n#endif\n return (aniUV.xy + vertIndex) / vec2(frameTile.x, frameTile.y);\n}\nattribute vec3 a_position;\nattribute vec3 a_texCoord;\nattribute vec3 a_texCoord1;\nattribute vec3 a_texCoord2;\nattribute vec4 a_color;\n#if CC_USE_STRETCHED_BILLBOARD\n attribute vec3 a_color1;\n#endif\n#if CC_USE_MESH\n attribute vec3 a_texCoord3;\n attribute vec3 a_normal;\n attribute vec4 a_color1;\n#endif\nvec4 lpvs_main() {\n vec3 compScale = scale.xyz * a_texCoord1;\n vec4 pos = vec4(a_position, 1);\n#if CC_USE_STRETCHED_BILLBOARD\n vec4 velocity = vec4(a_color1.xyz, 0);\n#endif\n#if !CC_USE_WORLD_SPACE\n pos = cc_matWorld * pos;\n #if CC_USE_STRETCHED_BILLBOARD\n velocity = cc_matWorld * velocity;\n #endif\n#endif\n#if !CC_USE_MESH\n vec2 cornerOffset = vec2((a_texCoord.xy - 0.5));\n #if CC_USE_BILLBOARD\n vec3 rotEuler = a_texCoord2;\n #elif CC_USE_STRETCHED_BILLBOARD\n vec3 rotEuler = vec3(0.);\n #else\n vec3 rotEuler = vec3(0., 0., a_texCoord2.z);\n #endif\n computeVertPos(pos, cornerOffset, quaternionFromEuler(rotEuler), compScale\n #if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , cc_matViewInv\n #endif\n #if CC_USE_STRETCHED_BILLBOARD\n , cc_cameraPos.xyz\n , velocity\n , frameTile_velLenScale.z\n , frameTile_velLenScale.w\n , a_texCoord.x\n #endif\n );\n color = a_color;\n#else\n mat4 xformNoScale = matrixFromRT(quaternionFromEuler(a_texCoord2), pos.xyz);\n mat4 xform = matFromRTS(quaternionFromEuler(a_texCoord2), pos.xyz, compScale);\n pos = xform * vec4(a_texCoord3, 1);\n vec4 normal = xformNoScale * vec4(a_normal, 0);\n color = a_color * a_color1;\n#endif\n uv = computeUV(a_texCoord.z, a_texCoord.xy, frameTile_velLenScale.xy) * mainTiling_Offset.xy + mainTiling_Offset.zw;\n pos = cc_matViewProj * pos;\n return pos;\n}\nvoid main() { gl_Position = lpvs_main(); }",
  740. "frag": "\nprecision highp float;\nvec4 CCFragOutput (vec4 color) {\n #if OUTPUT_TO_GAMMA\n color.rgb = sqrt(color.rgb);\n #endif\n\treturn color;\n}\nvarying vec2 uv;\nvarying vec4 color;\nuniform sampler2D mainTexture;\nvec4 addSmooth () {\n vec4 col = color * texture2D(mainTexture, uv);\n col.rgb *= col.a;\n return CCFragOutput(col);\n}\nvoid main() { gl_FragColor = addSmooth(); }"
  741. },
  742. "builtins": {
  743. "globals": {
  744. "blocks": [
  745. {
  746. "name": "CCGlobal",
  747. "defines": []
  748. }
  749. ],
  750. "samplers": []
  751. },
  752. "locals": {
  753. "blocks": [
  754. {
  755. "name": "CCLocal",
  756. "defines": []
  757. }
  758. ],
  759. "samplers": []
  760. }
  761. },
  762. "defines": [
  763. {
  764. "name": "CC_USE_BILLBOARD",
  765. "type": "boolean",
  766. "defines": []
  767. },
  768. {
  769. "name": "CC_USE_STRETCHED_BILLBOARD",
  770. "type": "boolean",
  771. "defines": []
  772. },
  773. {
  774. "name": "CC_USE_HORIZONTAL_BILLBOARD",
  775. "type": "boolean",
  776. "defines": []
  777. },
  778. {
  779. "name": "CC_USE_VERTICAL_BILLBOARD",
  780. "type": "boolean",
  781. "defines": []
  782. },
  783. {
  784. "name": "CC_USE_MESH",
  785. "type": "boolean",
  786. "defines": []
  787. },
  788. {
  789. "name": "CC_USE_WORLD_SPACE",
  790. "type": "boolean",
  791. "defines": []
  792. },
  793. {
  794. "name": "OUTPUT_TO_GAMMA",
  795. "type": "boolean",
  796. "defines": []
  797. }
  798. ],
  799. "blocks": [
  800. {
  801. "name": "Constants",
  802. "members": [
  803. {
  804. "name": "mainTiling_Offset",
  805. "type": 16,
  806. "count": 1
  807. },
  808. {
  809. "name": "frameTile_velLenScale",
  810. "type": 16,
  811. "count": 1
  812. },
  813. {
  814. "name": "scale",
  815. "type": 16,
  816. "count": 1
  817. }
  818. ],
  819. "defines": [],
  820. "binding": 0
  821. }
  822. ],
  823. "samplers": [
  824. {
  825. "name": "mainTexture",
  826. "type": 29,
  827. "count": 1,
  828. "defines": [],
  829. "binding": 30
  830. }
  831. ],
  832. "record": null,
  833. "name": "builtin-3d-particle|particle-vs-legacy:lpvs_main|no-tint-fs:addSmooth"
  834. },
  835. {
  836. "hash": 145387972,
  837. "glsl3": {
  838. "vert": "\nprecision highp float;\nvec4 quaternionFromAxis(vec3 xAxis,vec3 yAxis,vec3 zAxis){\n mat3 m = mat3(xAxis,yAxis,zAxis);\n float trace = m[0][0] + m[1][1] + m[2][2];\n vec4 quat;\n if (trace > 0.) {\n float s = 0.5 / sqrt(trace + 1.0);\n quat.w = 0.25 / s;\n quat.x = (m[2][1] - m[1][2]) * s;\n quat.y = (m[0][2] - m[2][0]) * s;\n quat.z = (m[1][0] - m[0][1]) * s;\n } else if ((m[0][0] > m[1][1]) && (m[0][0] > m[2][2])) {\n float s = 2.0 * sqrt(1.0 + m[0][0] - m[1][1] - m[2][2]);\n quat.w = (m[2][1] - m[1][2]) / s;\n quat.x = 0.25 * s;\n quat.y = (m[0][1] + m[1][0]) / s;\n quat.z = (m[0][2] + m[2][0]) / s;\n } else if (m[1][1] > m[2][2]) {\n float s = 2.0 * sqrt(1.0 + m[1][1] - m[0][0] - m[2][2]);\n quat.w = (m[0][2] - m[2][0]) / s;\n quat.x = (m[0][1] + m[1][0]) / s;\n quat.y = 0.25 * s;\n quat.z = (m[1][2] + m[2][1]) / s;\n } else {\n float s = 2.0 * sqrt(1.0 + m[2][2] - m[0][0] - m[1][1]);\n quat.w = (m[1][0] - m[0][1]) / s;\n quat.x = (m[0][2] + m[2][0]) / s;\n quat.y = (m[1][2] + m[2][1]) / s;\n quat.z = 0.25 * s;\n }\n float len = quat.x * quat.x + quat.y * quat.y + quat.z * quat.z + quat.w * quat.w;\n if (len > 0.) {\n len = 1. / sqrt(len);\n quat.x = quat.x * len;\n quat.y = quat.y * len;\n quat.z = quat.z * len;\n quat.w = quat.w * len;\n }\n return quat;\n}\nvec4 quaternionFromEuler(vec3 angle){\n float x = angle.x / 2.;\n float y = angle.y / 2.;\n float z = angle.z / 2.;\n float sx = sin(x);\n float cx = cos(x);\n float sy = sin(y);\n float cy = cos(y);\n float sz = sin(z);\n float cz = cos(z);\n vec4 quat = vec4(0);\n quat.x = sx * cy * cz + cx * sy * sz;\n quat.y = cx * sy * cz + sx * cy * sz;\n quat.z = cx * cy * sz - sx * sy * cz;\n quat.w = cx * cy * cz - sx * sy * sz;\n return quat;\n}\nmat4 matrixFromRT(vec4 q, vec3 p){\n float x2 = q.x + q.x;\n float y2 = q.y + q.y;\n float z2 = q.z + q.z;\n float xx = q.x * x2;\n float xy = q.x * y2;\n float xz = q.x * z2;\n float yy = q.y * y2;\n float yz = q.y * z2;\n float zz = q.z * z2;\n float wx = q.w * x2;\n float wy = q.w * y2;\n float wz = q.w * z2;\n return mat4(\n 1. - (yy + zz), xy + wz, xz - wy, 0,\n xy - wz, 1. - (xx + zz), yz + wx, 0,\n xz + wy, yz - wx, 1. - (xx + yy), 0,\n p.x, p.y, p.z, 1\n );\n}\nmat4 matFromRTS(vec4 q, vec3 t, vec3 s){\n float x = q.x, y = q.y, z = q.z, w = q.w;\n float x2 = x + x;\n float y2 = y + y;\n float z2 = z + z;\n float xx = x * x2;\n float xy = x * y2;\n float xz = x * z2;\n float yy = y * y2;\n float yz = y * z2;\n float zz = z * z2;\n float wx = w * x2;\n float wy = w * y2;\n float wz = w * z2;\n float sx = s.x;\n float sy = s.y;\n float sz = s.z;\n return mat4((1. - (yy + zz)) * sx, (xy + wz) * sx, (xz - wy) * sx, 0,\n (xy - wz) * sy, (1. - (xx + zz)) * sy, (yz + wx) * sy, 0,\n (xz + wy) * sz, (yz - wx) * sz, (1. - (xx + yy)) * sz, 0,\n t.x, t.y, t.z, 1);\n}\nvec4 quatMultiply(vec4 a, vec4 b){\n vec4 quat;\n quat.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y;\n quat.y = a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z;\n quat.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x;\n quat.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;\n return quat;\n}\nvoid rotateVecFromQuat(inout vec3 v, vec4 q){\n float ix = q.w * v.x + q.y * v.z - q.z * v.y;\n float iy = q.w * v.y + q.z * v.x - q.x * v.z;\n float iz = q.w * v.z + q.x * v.y - q.y * v.x;\n float iw = -q.x * v.x - q.y * v.y - q.z * v.z;\n v.x = ix * q.w + iw * -q.x + iy * -q.z - iz * -q.y;\n v.y = iy * q.w + iw * -q.y + iz * -q.x - ix * -q.z;\n v.z = iz * q.w + iw * -q.z + ix * -q.y - iy * -q.x;\n}\nvec3 rotateInLocalSpace(vec3 pos, vec3 xAxis, vec3 yAxis, vec3 zAxis, vec4 q){\n float z = pos.z;\n float x = pos.x;\n float y = pos.y;\n vec4 viewQuat = quaternionFromAxis(xAxis, yAxis, zAxis);\n vec4 rotQuat = quatMultiply(viewQuat, q);\n rotateVecFromQuat(pos, rotQuat);\n return pos;\n}\nvoid rotateCorner(inout vec2 corner, float angle){\n float xOS = cos(angle) * corner.x - sin(angle) * corner.y;\n float yOS = sin(angle) * corner.x + cos(angle) * corner.y;\n corner.x = xOS;\n corner.y = yOS;\n}\nuniform Constants{\n vec4 mainTiling_Offset;\n vec4 frameTile_velLenScale;\n vec4 scale;\n};\nuniform CCGlobal {\n mat4 cc_matView;\n mat4 cc_matViewInv;\n mat4 cc_matProj;\n mat4 cc_matProjInv;\n mat4 cc_matViewProj;\n mat4 cc_matViewProjInv;\n vec4 cc_cameraPos;\n vec4 cc_time;\n mediump vec4 cc_screenSize;\n mediump vec4 cc_screenScale;\n};\nuniform CCLocal {\n mat4 cc_matWorld;\n mat4 cc_matWorldIT;\n};\nout vec2 uv;\nout vec4 color;\nvoid computeVertPos(inout vec4 pos, vec2 vertOffset, vec4 q, vec3 s\n#if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , mat4 viewInv\n#endif\n#if CC_USE_STRETCHED_BILLBOARD\n , vec3 eye\n , vec4 velocity\n , float velocityScale\n , float lengthScale\n , float xIndex\n#endif\n) {\n#if CC_USE_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = normalize(vec3(viewInv[0][0], viewInv[1][0], viewInv[2][0]));\n vec3 camY = normalize(vec3(viewInv[0][1], viewInv[1][1], viewInv[2][1]));\n vec3 camZ = normalize(vec3(viewInv[0][2], viewInv[1][2], viewInv[2][2]));\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, camZ, q);\n#elif CC_USE_STRETCHED_BILLBOARD\n vec3 camRight = normalize(cross(pos.xyz - eye, velocity.xyz)) * s.x;\n vec3 camUp = velocity.xyz * velocityScale + normalize(velocity.xyz) * lengthScale * s.y;\n pos.xyz += (camRight * abs(vertOffset.x) * sign(vertOffset.y)) - camUp * xIndex;\n#elif CC_USE_HORIZONTAL_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = vec3(1, 0, 0);\n vec3 camY = vec3(0, 0, -1);\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, cross(camX, camY), q);\n#elif CC_USE_VERTICAL_BILLBOARD\n vec2 viewSpaceVert = vec2(vertOffset.x * s.x, vertOffset.y * s.y);\n rotateCorner(viewSpaceVert, q.z);\n vec3 camX = normalize(vec3(cc_matView[0][0], cc_matView[1][0], cc_matView[2][0]));\n vec3 camY = vec3(0, 1, 0);\n vec3 offset = camX * viewSpaceVert.x + camY * viewSpaceVert.y;\n pos.xyz += offset;\n#else\n pos.x += vertOffset.x;\n pos.y += vertOffset.y;\n#endif\n}\nvec2 computeUV(float frameIndex, vec2 vertIndex, vec2 frameTile){\n vec2 aniUV = vec2(0, floor(frameIndex * frameTile.y));\n aniUV.x = floor(frameIndex * frameTile.x * frameTile.y - aniUV.y * frameTile.x);\n#if !CC_USE_MESH\n vertIndex.y = 1. - vertIndex.y;\n#endif\n return (aniUV.xy + vertIndex) / vec2(frameTile.x, frameTile.y);\n}\nin vec3 a_position;\nin vec3 a_texCoord;\nin vec3 a_texCoord1;\nin vec3 a_texCoord2;\nin vec4 a_color;\n#if CC_USE_STRETCHED_BILLBOARD\n in vec3 a_color1;\n#endif\n#if CC_USE_MESH\n in vec3 a_texCoord3;\n in vec3 a_normal;\n in vec4 a_color1;\n#endif\nvec4 lpvs_main() {\n vec3 compScale = scale.xyz * a_texCoord1;\n vec4 pos = vec4(a_position, 1);\n#if CC_USE_STRETCHED_BILLBOARD\n vec4 velocity = vec4(a_color1.xyz, 0);\n#endif\n#if !CC_USE_WORLD_SPACE\n pos = cc_matWorld * pos;\n #if CC_USE_STRETCHED_BILLBOARD\n velocity = cc_matWorld * velocity;\n #endif\n#endif\n#if !CC_USE_MESH\n vec2 cornerOffset = vec2((a_texCoord.xy - 0.5));\n #if CC_USE_BILLBOARD\n vec3 rotEuler = a_texCoord2;\n #elif CC_USE_STRETCHED_BILLBOARD\n vec3 rotEuler = vec3(0.);\n #else\n vec3 rotEuler = vec3(0., 0., a_texCoord2.z);\n #endif\n computeVertPos(pos, cornerOffset, quaternionFromEuler(rotEuler), compScale\n #if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , cc_matViewInv\n #endif\n #if CC_USE_STRETCHED_BILLBOARD\n , cc_cameraPos.xyz\n , velocity\n , frameTile_velLenScale.z\n , frameTile_velLenScale.w\n , a_texCoord.x\n #endif\n );\n color = a_color;\n#else\n mat4 xformNoScale = matrixFromRT(quaternionFromEuler(a_texCoord2), pos.xyz);\n mat4 xform = matFromRTS(quaternionFromEuler(a_texCoord2), pos.xyz, compScale);\n pos = xform * vec4(a_texCoord3, 1);\n vec4 normal = xformNoScale * vec4(a_normal, 0);\n color = a_color * a_color1;\n#endif\n uv = computeUV(a_texCoord.z, a_texCoord.xy, frameTile_velLenScale.xy) * mainTiling_Offset.xy + mainTiling_Offset.zw;\n pos = cc_matViewProj * pos;\n return pos;\n}\nvoid main() { gl_Position = lpvs_main(); }",
  839. "frag": "\nprecision highp float;\nvec4 CCFragOutput (vec4 color) {\n #if OUTPUT_TO_GAMMA\n color.rgb = sqrt(color.rgb);\n #endif\n\treturn color;\n}\nin vec2 uv;\nin vec4 color;\nuniform sampler2D mainTexture;\nvec4 premultiplied () {\n vec4 col = color * texture(mainTexture, uv) * color.a;\n return CCFragOutput(col);\n}\nout vec4 cc_FragColor;\nvoid main() { cc_FragColor = premultiplied(); }"
  840. },
  841. "glsl1": {
  842. "vert": "\nprecision highp float;\nvec4 quaternionFromAxis(vec3 xAxis,vec3 yAxis,vec3 zAxis){\n mat3 m = mat3(xAxis,yAxis,zAxis);\n float trace = m[0][0] + m[1][1] + m[2][2];\n vec4 quat;\n if (trace > 0.) {\n float s = 0.5 / sqrt(trace + 1.0);\n quat.w = 0.25 / s;\n quat.x = (m[2][1] - m[1][2]) * s;\n quat.y = (m[0][2] - m[2][0]) * s;\n quat.z = (m[1][0] - m[0][1]) * s;\n } else if ((m[0][0] > m[1][1]) && (m[0][0] > m[2][2])) {\n float s = 2.0 * sqrt(1.0 + m[0][0] - m[1][1] - m[2][2]);\n quat.w = (m[2][1] - m[1][2]) / s;\n quat.x = 0.25 * s;\n quat.y = (m[0][1] + m[1][0]) / s;\n quat.z = (m[0][2] + m[2][0]) / s;\n } else if (m[1][1] > m[2][2]) {\n float s = 2.0 * sqrt(1.0 + m[1][1] - m[0][0] - m[2][2]);\n quat.w = (m[0][2] - m[2][0]) / s;\n quat.x = (m[0][1] + m[1][0]) / s;\n quat.y = 0.25 * s;\n quat.z = (m[1][2] + m[2][1]) / s;\n } else {\n float s = 2.0 * sqrt(1.0 + m[2][2] - m[0][0] - m[1][1]);\n quat.w = (m[1][0] - m[0][1]) / s;\n quat.x = (m[0][2] + m[2][0]) / s;\n quat.y = (m[1][2] + m[2][1]) / s;\n quat.z = 0.25 * s;\n }\n float len = quat.x * quat.x + quat.y * quat.y + quat.z * quat.z + quat.w * quat.w;\n if (len > 0.) {\n len = 1. / sqrt(len);\n quat.x = quat.x * len;\n quat.y = quat.y * len;\n quat.z = quat.z * len;\n quat.w = quat.w * len;\n }\n return quat;\n}\nvec4 quaternionFromEuler(vec3 angle){\n float x = angle.x / 2.;\n float y = angle.y / 2.;\n float z = angle.z / 2.;\n float sx = sin(x);\n float cx = cos(x);\n float sy = sin(y);\n float cy = cos(y);\n float sz = sin(z);\n float cz = cos(z);\n vec4 quat = vec4(0);\n quat.x = sx * cy * cz + cx * sy * sz;\n quat.y = cx * sy * cz + sx * cy * sz;\n quat.z = cx * cy * sz - sx * sy * cz;\n quat.w = cx * cy * cz - sx * sy * sz;\n return quat;\n}\nmat4 matrixFromRT(vec4 q, vec3 p){\n float x2 = q.x + q.x;\n float y2 = q.y + q.y;\n float z2 = q.z + q.z;\n float xx = q.x * x2;\n float xy = q.x * y2;\n float xz = q.x * z2;\n float yy = q.y * y2;\n float yz = q.y * z2;\n float zz = q.z * z2;\n float wx = q.w * x2;\n float wy = q.w * y2;\n float wz = q.w * z2;\n return mat4(\n 1. - (yy + zz), xy + wz, xz - wy, 0,\n xy - wz, 1. - (xx + zz), yz + wx, 0,\n xz + wy, yz - wx, 1. - (xx + yy), 0,\n p.x, p.y, p.z, 1\n );\n}\nmat4 matFromRTS(vec4 q, vec3 t, vec3 s){\n float x = q.x, y = q.y, z = q.z, w = q.w;\n float x2 = x + x;\n float y2 = y + y;\n float z2 = z + z;\n float xx = x * x2;\n float xy = x * y2;\n float xz = x * z2;\n float yy = y * y2;\n float yz = y * z2;\n float zz = z * z2;\n float wx = w * x2;\n float wy = w * y2;\n float wz = w * z2;\n float sx = s.x;\n float sy = s.y;\n float sz = s.z;\n return mat4((1. - (yy + zz)) * sx, (xy + wz) * sx, (xz - wy) * sx, 0,\n (xy - wz) * sy, (1. - (xx + zz)) * sy, (yz + wx) * sy, 0,\n (xz + wy) * sz, (yz - wx) * sz, (1. - (xx + yy)) * sz, 0,\n t.x, t.y, t.z, 1);\n}\nvec4 quatMultiply(vec4 a, vec4 b){\n vec4 quat;\n quat.x = a.x * b.w + a.w * b.x + a.y * b.z - a.z * b.y;\n quat.y = a.y * b.w + a.w * b.y + a.z * b.x - a.x * b.z;\n quat.z = a.z * b.w + a.w * b.z + a.x * b.y - a.y * b.x;\n quat.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;\n return quat;\n}\nvoid rotateVecFromQuat(inout vec3 v, vec4 q){\n float ix = q.w * v.x + q.y * v.z - q.z * v.y;\n float iy = q.w * v.y + q.z * v.x - q.x * v.z;\n float iz = q.w * v.z + q.x * v.y - q.y * v.x;\n float iw = -q.x * v.x - q.y * v.y - q.z * v.z;\n v.x = ix * q.w + iw * -q.x + iy * -q.z - iz * -q.y;\n v.y = iy * q.w + iw * -q.y + iz * -q.x - ix * -q.z;\n v.z = iz * q.w + iw * -q.z + ix * -q.y - iy * -q.x;\n}\nvec3 rotateInLocalSpace(vec3 pos, vec3 xAxis, vec3 yAxis, vec3 zAxis, vec4 q){\n float z = pos.z;\n float x = pos.x;\n float y = pos.y;\n vec4 viewQuat = quaternionFromAxis(xAxis, yAxis, zAxis);\n vec4 rotQuat = quatMultiply(viewQuat, q);\n rotateVecFromQuat(pos, rotQuat);\n return pos;\n}\nvoid rotateCorner(inout vec2 corner, float angle){\n float xOS = cos(angle) * corner.x - sin(angle) * corner.y;\n float yOS = sin(angle) * corner.x + cos(angle) * corner.y;\n corner.x = xOS;\n corner.y = yOS;\n}\nuniform vec4 mainTiling_Offset;\nuniform vec4 frameTile_velLenScale;\nuniform vec4 scale;\nuniform mat4 cc_matView;\nuniform mat4 cc_matViewInv;\nuniform mat4 cc_matViewProj;\nuniform vec4 cc_cameraPos;\nuniform mat4 cc_matWorld;\nvarying vec2 uv;\nvarying vec4 color;\nvoid computeVertPos(inout vec4 pos, vec2 vertOffset, vec4 q, vec3 s\n#if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , mat4 viewInv\n#endif\n#if CC_USE_STRETCHED_BILLBOARD\n , vec3 eye\n , vec4 velocity\n , float velocityScale\n , float lengthScale\n , float xIndex\n#endif\n) {\n#if CC_USE_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = normalize(vec3(viewInv[0][0], viewInv[1][0], viewInv[2][0]));\n vec3 camY = normalize(vec3(viewInv[0][1], viewInv[1][1], viewInv[2][1]));\n vec3 camZ = normalize(vec3(viewInv[0][2], viewInv[1][2], viewInv[2][2]));\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, camZ, q);\n#elif CC_USE_STRETCHED_BILLBOARD\n vec3 camRight = normalize(cross(pos.xyz - eye, velocity.xyz)) * s.x;\n vec3 camUp = velocity.xyz * velocityScale + normalize(velocity.xyz) * lengthScale * s.y;\n pos.xyz += (camRight * abs(vertOffset.x) * sign(vertOffset.y)) - camUp * xIndex;\n#elif CC_USE_HORIZONTAL_BILLBOARD\n vec3 viewSpaceVert = vec3(vertOffset.x * s.x, vertOffset.y * s.y, 0.);\n vec3 camX = vec3(1, 0, 0);\n vec3 camY = vec3(0, 0, -1);\n pos.xyz += rotateInLocalSpace(viewSpaceVert, camX, camY, cross(camX, camY), q);\n#elif CC_USE_VERTICAL_BILLBOARD\n vec2 viewSpaceVert = vec2(vertOffset.x * s.x, vertOffset.y * s.y);\n rotateCorner(viewSpaceVert, q.z);\n vec3 camX = normalize(vec3(cc_matView[0][0], cc_matView[1][0], cc_matView[2][0]));\n vec3 camY = vec3(0, 1, 0);\n vec3 offset = camX * viewSpaceVert.x + camY * viewSpaceVert.y;\n pos.xyz += offset;\n#else\n pos.x += vertOffset.x;\n pos.y += vertOffset.y;\n#endif\n}\nvec2 computeUV(float frameIndex, vec2 vertIndex, vec2 frameTile){\n vec2 aniUV = vec2(0, floor(frameIndex * frameTile.y));\n aniUV.x = floor(frameIndex * frameTile.x * frameTile.y - aniUV.y * frameTile.x);\n#if !CC_USE_MESH\n vertIndex.y = 1. - vertIndex.y;\n#endif\n return (aniUV.xy + vertIndex) / vec2(frameTile.x, frameTile.y);\n}\nattribute vec3 a_position;\nattribute vec3 a_texCoord;\nattribute vec3 a_texCoord1;\nattribute vec3 a_texCoord2;\nattribute vec4 a_color;\n#if CC_USE_STRETCHED_BILLBOARD\n attribute vec3 a_color1;\n#endif\n#if CC_USE_MESH\n attribute vec3 a_texCoord3;\n attribute vec3 a_normal;\n attribute vec4 a_color1;\n#endif\nvec4 lpvs_main() {\n vec3 compScale = scale.xyz * a_texCoord1;\n vec4 pos = vec4(a_position, 1);\n#if CC_USE_STRETCHED_BILLBOARD\n vec4 velocity = vec4(a_color1.xyz, 0);\n#endif\n#if !CC_USE_WORLD_SPACE\n pos = cc_matWorld * pos;\n #if CC_USE_STRETCHED_BILLBOARD\n velocity = cc_matWorld * velocity;\n #endif\n#endif\n#if !CC_USE_MESH\n vec2 cornerOffset = vec2((a_texCoord.xy - 0.5));\n #if CC_USE_BILLBOARD\n vec3 rotEuler = a_texCoord2;\n #elif CC_USE_STRETCHED_BILLBOARD\n vec3 rotEuler = vec3(0.);\n #else\n vec3 rotEuler = vec3(0., 0., a_texCoord2.z);\n #endif\n computeVertPos(pos, cornerOffset, quaternionFromEuler(rotEuler), compScale\n #if CC_USE_BILLBOARD || CC_USE_VERTICAL_BILLBOARD\n , cc_matViewInv\n #endif\n #if CC_USE_STRETCHED_BILLBOARD\n , cc_cameraPos.xyz\n , velocity\n , frameTile_velLenScale.z\n , frameTile_velLenScale.w\n , a_texCoord.x\n #endif\n );\n color = a_color;\n#else\n mat4 xformNoScale = matrixFromRT(quaternionFromEuler(a_texCoord2), pos.xyz);\n mat4 xform = matFromRTS(quaternionFromEuler(a_texCoord2), pos.xyz, compScale);\n pos = xform * vec4(a_texCoord3, 1);\n vec4 normal = xformNoScale * vec4(a_normal, 0);\n color = a_color * a_color1;\n#endif\n uv = computeUV(a_texCoord.z, a_texCoord.xy, frameTile_velLenScale.xy) * mainTiling_Offset.xy + mainTiling_Offset.zw;\n pos = cc_matViewProj * pos;\n return pos;\n}\nvoid main() { gl_Position = lpvs_main(); }",
  843. "frag": "\nprecision highp float;\nvec4 CCFragOutput (vec4 color) {\n #if OUTPUT_TO_GAMMA\n color.rgb = sqrt(color.rgb);\n #endif\n\treturn color;\n}\nvarying vec2 uv;\nvarying vec4 color;\nuniform sampler2D mainTexture;\nvec4 premultiplied () {\n vec4 col = color * texture2D(mainTexture, uv) * color.a;\n return CCFragOutput(col);\n}\nvoid main() { gl_FragColor = premultiplied(); }"
  844. },
  845. "builtins": {
  846. "globals": {
  847. "blocks": [
  848. {
  849. "name": "CCGlobal",
  850. "defines": []
  851. }
  852. ],
  853. "samplers": []
  854. },
  855. "locals": {
  856. "blocks": [
  857. {
  858. "name": "CCLocal",
  859. "defines": []
  860. }
  861. ],
  862. "samplers": []
  863. }
  864. },
  865. "defines": [
  866. {
  867. "name": "CC_USE_BILLBOARD",
  868. "type": "boolean",
  869. "defines": []
  870. },
  871. {
  872. "name": "CC_USE_STRETCHED_BILLBOARD",
  873. "type": "boolean",
  874. "defines": []
  875. },
  876. {
  877. "name": "CC_USE_HORIZONTAL_BILLBOARD",
  878. "type": "boolean",
  879. "defines": []
  880. },
  881. {
  882. "name": "CC_USE_VERTICAL_BILLBOARD",
  883. "type": "boolean",
  884. "defines": []
  885. },
  886. {
  887. "name": "CC_USE_MESH",
  888. "type": "boolean",
  889. "defines": []
  890. },
  891. {
  892. "name": "CC_USE_WORLD_SPACE",
  893. "type": "boolean",
  894. "defines": []
  895. },
  896. {
  897. "name": "OUTPUT_TO_GAMMA",
  898. "type": "boolean",
  899. "defines": []
  900. }
  901. ],
  902. "blocks": [
  903. {
  904. "name": "Constants",
  905. "members": [
  906. {
  907. "name": "mainTiling_Offset",
  908. "type": 16,
  909. "count": 1
  910. },
  911. {
  912. "name": "frameTile_velLenScale",
  913. "type": 16,
  914. "count": 1
  915. },
  916. {
  917. "name": "scale",
  918. "type": 16,
  919. "count": 1
  920. }
  921. ],
  922. "defines": [],
  923. "binding": 0
  924. }
  925. ],
  926. "samplers": [
  927. {
  928. "name": "mainTexture",
  929. "type": 29,
  930. "count": 1,
  931. "defines": [],
  932. "binding": 30
  933. }
  934. ],
  935. "record": null,
  936. "name": "builtin-3d-particle|particle-vs-legacy:lpvs_main|no-tint-fs:premultiplied"
  937. }
  938. ]
  939. }